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a b s t r a c t

Within electrified vehicle powertrains, lithium-ion battery performance degrades with aging and usage, resulting
in a loss in both energy and power capacity. As a result, models used for system design and control
algorithm development would ideally capture the impact of those efforts on battery capacity degradation, be
computationally efficient, and simple enough to be used for algorithm development. This paper provides an
assessment of the state-of-the-art in lithium-ion battery degradation models, including accuracy, computational
complexity, and amenability to control algorithm development. Various aging and degradation models have
been studied in the literature, including physics-based electrochemical models, semi-empirical models, and
empirical models. Some of these models have been validated with experimental data; however, comparisons
of pre-existing degradation models across multiple experimental data sets have not been previously published.
Three representative models, a 1-d electrochemical model (a combination of performance model and degradation
model), a semi-empirical degradation model (the performance is predicted by an equivalent circuit model) and
an empirical degradation model (the performance is predicted by an equivalent circuit model), are compared
against four published experimental data sets for a 2.3-Ah commercial graphite/LiFePO4 cell. Based on simulation
results and comparisons to experimental data, the key differences in the aging factors captured by each of the
models are summarized. The results show that the physics-based model is best able to capture results across
all four representative data sets with an error less than 10%, but is 20𝑥 slower than the empirical model, and
134𝑥 slower than the semi-empirical model, making it unsuitable for powertrain system design and model-based
algorithm development. Despite being computationally efficient, the semi-empirical and empirical models, when
used under conditions that lie outside the calibration data set, exhibit up to 71% error in capacity loss prediction.
Such models require expensive experimental data collection to recalibrate for every new application. Thus, in
the author’s opinion, there exists a need for a physically-based model that generalizes well across operating
conditions, is computationally efficient for model-based design, and simple enough for control algorithm
development.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Vehicle electrification offers the potential to decrease fuel use,
greenhouse gas emissions, and tailpipe emissions of criteria pollutants.
Batteries play an important role in electrified propulsion systems.
Lithium ion batteries have the advantage of high energy density, high
power density, and low self-discharge rate (Oswal, Paul, & Zhao, 2010).
These favorable properties, as well as decreasing costs, have made them
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the most popular technology for automotive applications (Safari &
Delacourt, 2011b; Wang et al., 2011).

In spite of these favorable properties of lithium ion batteries, aging
and degradation during usage remain an impediment to widespread
adaption. Loss of cyclable lithium via side reactions, loss of electrode
active material, and resistance increase through interfacial layer growth
or contact issues are among the most common aging phenomena
encountered in lithium ion batteries (Delacourt & Safari, 2012). The
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rate of capacity loss for each mechanism is a complex nonlinear process
dependent on various factors including temperature, state of charge
(SOC), depth of discharge (DOD), C-rate, and storage condition of the
battery.

Several types of models for predicting battery degradation have been
widely used in hybrid electric vehicle system-level study, including
physics-based electrochemical models (Jin et al., 2017c; Lawder,
Northrop, & Subramanian, 2014; Prada et al., 2013; Vora et al., 2015),
semi-empirical models (Smith, Markel, & Pesaran, 0000), and empirical
models (Peterson, Apt, & Whitacre, 2010; Vora et al., 2017; Wang et al.,
2011). These models describe the dependence of battery resistance and
capacity fade on various aging factors (Jin, 2017; Smith, Earleywine,
Wood, Neubauer, & Pesaran, 2012; Smith et al., 0000). Due to their
simplicity and sufficient accuracy for many applications, semi-empirical
and empirical models have been used for on-line state-of-health (SOH)
estimation. As will be shown, the usability of these models, however,
is generally limited to operating conditions characteristic of the data
used for calibration. To cover a relatively wide range of operating
conditions, expensive and time consuming experiments need to be
conducted. In contrast, electrochemical models, which describe aging
phenomena with some physical basis, have the potential to allow the
analysis to be extended to a larger range of operation conditions once
the model is calibrated, but are computationally more expensive than
the aforementioned empirical and semi-empirical models.

A semi-empirical degradation model developed by National Re-
newable Energy Laboratory (NREL) (Smith et al., 0000, 2013) was
generated by compiling experimental data under different aging con-
ditions from multiple sources. Reference (Wang et al., 2011) pro-
posed an empirical model that was fitted to experimental data with
variable temperatures, C-rates and DODs. Reference (Onori, Spagnol,
Marano, Guezennec, & Rizzoni, 0000) presented a weighted ampere-
hour throughput model based on a severity factor map that captures
the battery degradation due to the different operating factors including
temperature and C-rate. Several physics-based aging models for lithium-
ion batteries have also been described in the literature. In Safari,
Morcrette, Teyssot, and Delacourt (2009) and Delacourt and Safari
(2012), an aging model based on the single-particle approach was
developed to take into account the solid-electrolyte-interface (SEI) layer
thickness growth and possible active material loss at both anode and
cathode. A correlation of graphite active material loss as a function
of C-rate and temperature was implemented to get better agreement
with experimental data. Reference (Prada et al., 2013) showed a
simplified isothermal physics-based aging model, in which the SEI layer
growth was related to both capacity loss and internal resistance increase.
However, to the best of the authors’ knowledge, none of these models
have been compared with each other and with multiple experimental
datasets spanning various operating conditions.

The objective of this paper is to help model users understand the
strengths and weaknesses of these different types of degradation models
and thus select the most appropriate model, if available, for their specific
application. As will be shown, the higher fidelity degradation model de-
scribed by the electrochemical model relies on the performance informa-
tion, i.e. solid/electrolyte phase potential, solid/electrolyte concentra-
tion, and current density. The two degradation mechanisms described by
ordinary differential equations (ODEs) are easy to solve, but the inputs
to those ODEs require solving the electrochemical performance model.
It should be highlighted that several authors proposed different ways to
simplify the performance model, including Padé approximation (For-
man, Bashash, Stein, & Fathy, 2011), residue grouping (Smith, Rahn,
& Wang, 2008), polynomial approximation (Subramanian, Diwakar, &
Tapriyal, 2005), Galerkin projection (Fan, Pan, Canova, Marcicki, &
Yang, 2016), etc., however, none of them include degradation model
simplification, computational complexity, or accuracy considerations.
The semi-empirical and the empirical degradation models, on the other
hand, do not need detailed knowledge of the electrochemical system,
which is an advantage of these simpler models. The inputs for these

Fig. 1. Schematic of a Li-ion battery (graphite/LiFePO4), with a separator between two
electrodes (anode and cathode) (Smith & Wang, 2006).

models, i.e. current, SOC, voltage, can be obtained by the equivalent
circuit model, the electrochemical model, or experimental data.

A commercial graphite/LiFePO4 (LFP) cell, a promising technology
for automotive applications due to its excellent chemical and thermal
stability and low cost (Wang et al., 2011), is taken as an example to
illustrate the differences. This paper is organized as follows: Section
2 describes three battery degradation models, including a 1-D elec-
trochemical model, a semi-empirical model, and an empirical model.
Section 3 presents the model-to-model and model-to-data comparisons,
and some discussion of these results. It also describes the tradeoff
between accuracy and computational time for the 1-D electrochem-
ical model. Finally, Section 4 concludes the paper with some key
takeaways.

2. Battery degradation models

A schematic diagram of a typical graphite/LiFePO4 (LFP) cell with
a single pair of porous electrodes is shown in Fig. 1 (Smith & Wang,
2006). As shown, the model includes three domains: negative electrode
(anode), separator, and positive electrode (cathode). During discharge,
Li ions (represented as purple dots) diffuse to the surface of the LiC6
active material particles within the anode, de-insert from the surface,
and then transfer into the electrolyte solution. These lithium ions
travel through the electrolyte solution and separator to the cathode,
and diffuse towards the inner regions of the LiFePO4 active material
particles. The separator is an ionic conductor and electronic insulator,
which forces the electrons to flow through an external circuit. The
reverse occurs during the charging process.

Along with the charge and discharge operations, aging or degrada-
tion phenomena also occur inside a battery, including capacity fade,
power fade, stress–strain effects, and mechanical degradation. For each
type of degradation model i.e. physics-based, semi-empirical and em-
pirical, there are many models available. AutoLion ST is a commer-
cially available 1-D electrochemical model, which is implemented as a
software-in-the-loop model block. It has been validated across different
chemistries under different operating conditions (Kalupson, Luo, &
Shaffer, 2013; Vora et al., 2015, 2017). Different semi-empirical and
empirical models published in the literature are calibrated for different
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