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Abstract

We investigate a hyperbolic PDE, modeling wave propagation in viscoelastic media, under the influence 
of a linear memory term of Boltzmann type, and a nonlinear damping modeling friction, as well as an 
energy-amplifying supercritical nonlinear source:

{
utt − k(0)�u − ∫∞

0 k′(s)�u(t − s)ds + |ut |m−1ut = |u|p−1u, in � × (0, T ),

u(x, t) = u0(x, t), in � × (−∞,0],

where � is a bounded domain in R3 with a Dirichlét boundary condition. The relaxation kernel k is mono-
tone decreasing and k(∞) = 1. We study blow-up of solutions when the source is stronger than dissipations, 
i.e., p > max{m, 

√
k(0) }, under two different scenarios: first, the total energy is negative, and the second, 

the total energy is positive with sufficiently large quadratic energy. This manuscript is a follow-up work of 
the paper [30] in which Hadamard well-posedness of this equation has been established in the finite energy 
space. The model under consideration features a supercritical source and a linear memory that accounts 
for the full past history as time goes to −∞, which is distinct from other relevant models studied in the 
literature which usually involve subcritical sources and a finite-time memory.
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1. Introduction

1.1. The model and literature overview

Viscoelastic materials demonstrate properties between those of elastic materials and viscous 
fluid. In the nineteenth century, Boltzmann [14] realized that the behavior of these materials 
should be modeled through constitutive relations that involve long but fading memory. In par-
ticular, Boltzmann initiated the classical linear theory of viscoelasticity. As a consequence of 
the widespread use of polymers and other modern materials which exhibit stress relaxation, the 
theory of viscoelasticity has provided important applications in materials science and engineer-
ing. Please see [19] (and references therein) for the fundamental modeling development of linear 
viscoelasticity. We also refer the reader to the monographs [25,49] for surveys regarding the 
mathematical aspect of the theory of viscoelasticity. In addition, the literature is quite rich in 
various results on well-posedness and asymptotic stability of hyperbolic PDEs and conservation 
laws with memory terms of Boltzmann type, see for instance [17,18,20–24,26,29,34,39] and the 
references therein.

In this manuscript, we investigate the following nonlinear hyperbolic equation of viscoelas-
ticity:

⎧⎪⎨
⎪⎩

utt − k(0)�u − ∫∞
0 k′(s)�u(t − s)ds + |ut |m−1ut = |u|p−1u, in � × (0, T )

u(x, t) = 0, on � × (−∞, T )

u(x, t) = u0(x, t), in � × (−∞,0],
(1.1)

where the unknown u(x, t) is an R-valued function defined on � × (−∞, T ), and � ⊂ R
3 is 

a bounded domain (open and connected) with smooth boundary �. Our results extend easily to 
bounded domains in Rn, by accounting for the corresponding Sobolev embedding, and accord-
ingly adjusting the conditions imposed on the parameters. The system (1.1) models the wave 
propagation in viscoelastic material under the influence of frictional type of damping as well 
as energy-amplifying sources. Here, |ut |m−1ut (m ≥ 1) represents a nonlinear damping which 
dissipates energy and drives the system toward stability, while |u|p−1u (1 ≤ p < 6) represents 
a nonlinear source of supercritical growth rate which models an external force that amplifies 
energy and drives the system to possible instability. The memory integral 

∫∞
0 k′(s)�u(t − s)ds

of the Boltzmann type quantifies the viscous resistance and provides a weak form of energy dis-
sipation by assuming that the relaxation kernel satisfies: k′(s) < 0 for all s > 0 and k(∞) = 1. 
It also accounts for the full past history as time goes to −∞, as opposed to the finite-memory 
models where the history is taken only over the interval [0, t].

Nonlinear wave equations under the influence of damping and sources have been attracting 
considerable attention in the research field of analysis of nonlinear PDEs. In [28], Georgiev and 
Todorova considered a nonlinear wave equation with damping and sources:

utt − �u + |ut |m−1ut = |u|p−1u, in � × (0, T ), (1.2)
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