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a b s t r a c t

This paper applies the first-order differential operator method to the Monte Carlo keff-eigenvalue sensi-
tivity analyses. The effect of the perturbed fission source distribution due to the change of a cross section
on the sensitivity coefficients can be accurately estimated by introducing the source perturbation itera-
tion method. However, a prohibitively huge memory is required for the source perturbation iteration
method if a large number of sensitivity coefficients are calculated at the same time. For a reduction of
the memory requirements, the superhistory method is applied to incorporate the effect of the source per-
turbation into the differential operator method for sensitivity analyses. In the superhistory method, one
source particle and its progenies are followed over super-generations within one cycle calculation. It is
not necessary to wait or store a large amount of information until all histories in each cycle are termi-
nated. Although the superhistory method increases the variance of the sensitivity coefficients with the
super-generation, the memory requirement can be dramatically reduced by introducing the superhistory
method. The first-order differential operator method combined with the superhistory method is verified
through some numerical examples where a localized cross section change significantly affects the sensi-
tivity coefficients.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

There has been a growing interest in sensitivity and uncertainty
analysis of keff-eigenvalue or neutron general responses performed
with the Monte Carlo method. Additionally, there has been much
research and techniques developed to date. The sensitivity analysis
methods are now implemented into production-level Monte Carlo
codes such as SCALE (Rearden, 2004; Perfetti, 2012; Perfetti and
Rearden, 2016), MCNP (Kiedrowski et al., 2011; Kiedrowski and
Brown, 2013), SERPENT (Aufiero et al., 2015), MORET (Jinaphanh
et al., 2016), McCARD (Shim and Kim, 2011), and RMC (Qiu et al.,
2015, 2016a,b). The calculation of the adjoint flux, which is neces-
sary for sensitivity analysis, was considered difficult for the
continuous-energy Monte Carlo. The iterated fission probability
(IFP) method was developed for estimating the adjoint flux in the
continuous energy Monte Carlo and the method is now imple-
mented in many Monte Carlo codes (Truchet et al., 2015;
Terranova and Zoia, 2017). The IFP method calculates the expected
number of neutrons caused by a neutron at a location in phase
space as the adjoint function. The contribution method, which
was originally developed for shielding applications and is imple-

mented in the SCALE code, determines the importance of an event
by simulating secondary particles at the site of the event and track-
ing the number of fission neutrons created by each secondary par-
ticle (Williams, 1977). A method implemented in the SERPENT
code is based on the ‘‘collision-history based method” where all
cross sections involved in the sensitivity calculations are artificially
increased. Another method that this paper focuses on is the differ-
ential operator method (Rief, 1984; McKinney and Iverson, 1996;
Densmore et al., 1997; Nagaya and Mori, 2005; Raskach, 2009,
2010; Jinaphanh et al., 2016). The unique feature of the differential
operator method is that the calculation of the adjoint flux can be
circumvented and the first derivative of keff-eigenvalue with
respect to nuclear data can be estimated directly. Furthermore,
the differential operator method is applicable to estimating
responses of wide range of calculation characteristics: keff, reaction
rates and their ratios both in the eigenvalue problem and in the
problem of a subcritical system driven by an external neutron
source (Raskach, 2010). On the other hand, the IFP method is appli-
cable to computing keff derivatives and sensitivities only. The dif-
ferential operator method has been previously implemented in
the MCNP code. However, the differential operator method was
replaced by another method; presumably, because it produces
inaccurate sensitivity coefficient estimates for complex systems.
The sensitivity coefficient is the first derivative of keff-eigenvalue
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or general responses. The first derivative is exactly sampled in the
differential operator method. Nevertheless, the inaccuracy in the
differential operator method is caused by neglecting the perturba-
tion of the fission source distribution that cannot be taken into
account unless a special technique is employed for considering
the perturbation. A method for implementing the source perturba-
tion effect was developed in (Nagaya and Mori, 2005, 2011; Nagaya
et al., 2015; Raskach, 2009). However, the method requires the
iteration procedure similar to IFP to obtain the converged per-
turbed fission source distribution. The iteration procedure is simi-
larly required in the IFP method where the fission chain is tracked
for a number of generations to compute the adjoint-weighted tal-
lies. The iteration procedure in the differential operator method or
in the IFP method results in an increase in the memory require-
ments if the sensitivity coefficients of many isotopes, reactions,
and fine energy groups are calculated at the same time.

Several techniques for reducing the huge memory requirements
have been developed and installed in the Monte Carlo codes. In
MCNP, a sparse data handling scheme is employed, reducing the
memory requirement by a factor of 10 to 100 for many problems
(Kiedrowski and Brown, 2013). In McCARD (Shim and Kim, 2011;
Choi and Shim, 2016a,b), a memory-efficient adjoint estimation
method was developed by applying the IFP concept for the Monte
Carlo Wielandt method (Yamamoto and Miyoshi, 2004). In RMC
(Wang et al., 2015; Qiu et al., 2015; Qiu et al., 2016a,b), the super-
history method (Brissenden and Garlick, 1986) as well as the Wie-
landt method was adopted to reduce the memory consumption.

While the sensitivity analysis methods for generalized
responses in the Monte Carlo method have been developed (Choi
and Shim, 2016b; Qiu et al., 2016a; Perfetti and Rearden, 2016;
Aufiero et al., 2016), the present paper focuses on the sensitivity
analysis of keff-eigenvalue. This paper scrutinizes the source pertur-
bation effect on a sensitivity coefficient due to the change of
nuclear data through the multi-group Monte Carlo calculations. A
method to include the source perturbation effect in the sensitivity
coefficients and a memory reduction technique using the superhis-
tory method are discussed in the following sections.

2. Methodology of keff-eigenvalue sensitivity calculation with
the differential operator method

2.1. The differential operator method without perturbed source effect

This section presents a theory of keff-eigenvalue sensitivity cal-
culation using the Monte Carlo differential operator method. The
differential operator method for the perturbation calculation with
the source perturbation being implemented was already estab-
lished in previous research (Rief, 1984; Nagaya and Mori, 2005,
2011; Raskach, 2009; Jinaphanh et al., 2016). The capability of
the differential operator method was expanded to the second
and higher orders (Nagaya and Mori, 2011). In a Monte Carlo code,
MVP (Nagaya et al., 2015), the order of the differential operator
method was uniquely expanded to the 8th order. The reactivity
change due to a local perturbation can be accurately obtained by
the differential operator method by introducing the source pertur-
bation and by expanding the higher order Taylor series. For sensi-
tivity analyses, only the first-order derivatives are required. In this
section, the method to calculate the sensitivity coefficient is
repeatedly presented as follows; although, it is the duplication of
the previously published papers. The formalism to calculate the
first derivative of keff-eigenvalue with respect to a parameter was
presented in detail in previous publications (e.g. Nagaya and
Mori (2005)). This paper only presents the minimum explanations

for coding a Monte Carlo program to calculate the first derivative of
keff-eigenvalue.

The differential operator method scores an estimate of each dif-
ferential coefficient at each flight path or each collision point
within a perturbed region. The estimates that are scored during
the course of the random walk process are shown as follows. First,
a particle starts from a fission source site r. The angle is determined
isotropically using a random number. The particle moves to a col-
lision point r0 that is determined by the transport kernel:

Tðr ! r0Þ ¼ Rt expð�RtsÞ; ð1Þ
where Rt ¼ the macroscopic total cross section, s = the flight dis-
tance. When the particle travels a distance s through the perturbed
region and undergoes a collision, the weighting coefficient to be
scored is
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@
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where a is a perturbation parameter. For simplicity, the variables for
the energy and the direction are omitted. If the sensitivity coeffi-
cient with regard to a microscopic capture cross section of a nuclide
i is sought, a = rc;i and @Rt=@a ¼ Ni where rc;i ¼ the microscopic
capture cross section of the nuclide i, Ni ¼ the atom number density
of the nuclide i. If a = the macroscopic capture cross section Rc ,
@Rt=@a ¼ 1. If the particle passes through the perturbed region
without undergoing a collision, only the second term on the right-
hand side of Eq. (2), �s � @Rt=@a, is scored.

Unless the particle is killed at the collision point, the particle
undergoes a scattering reaction. The weighting coefficient for the
scattering kernel Rs=Rt is
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where Rs ¼ the macroscopic scattering cross section.
The keff-eigenvalue is the sum of mRf �w=Rt at each collision

point in a cycle where w = the weight of the colliding particle,
m ¼ the number of neutrons per fission, and Rf ¼ the macroscopic
fission cross section. Thus, the perturbation of mRf or Rt contributes
to the change of keff. To include this effect in the sensitivity coeffi-
cient, the following weighting coefficient is scored at each
collision:

Rt

mRf

@

@a
mRf

Rt
¼ 1
mRf

@

@a
mRf � 1

Rt

@
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Rt: ð4Þ

The scorings of Eqs. (2), (3), and (4) are repeated at each flight
and collision until the particle is discarded. As a result, the first
derivative of the keff-eigenvalue with respect to the perturbation
parameter a for the mth particle history is given by

@

@a
keff ;NP;m ¼

X
i

mRf ;i

Rt;i
wiwNP;i; ð5Þ

where wi ¼ the particle weight of the ith collision, and

wNP;i ¼ 1
mRf ;i
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where daRs ¼ 0 if a–Rs;¼ 1 if a ¼ Rsf g. The subscript NP denotes
that Eq. (5) does not include the effect of the source perturbation
caused by the change of the cross sections. The summation symbol
on the right-hand side of Eq. (5) means that the summation is car-
ried out at every collision point during the mth history. The second
term on the right-hand side of Eq. (6) means the sum of
1=Rs;l � @Rs;l=@a until the ith collision where Rs;l is the macroscopic
scattering cross section for the lth scattering. The last term on the
right-hand side of Eq. (6) means the sum of sk � @Rt;k=@a in the kth
flight distance of the perturbed region until the ith collision. The
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