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A B S T R A C T

The claim has been made that it can be proven that most published findings in medical, biological, and allied
sciences are false and that the reason for this can be proven and explained with a mathematical model. It has not,
however, been mathematically proven that most research findings are false, and this can be proven. The model
used in the proof is incoherent and has been falsified. Furthermore, advice to researchers derived from the model
is misleading and distracts from more important issues in experimental standards.

Introduction

In a very highly cited paper, Ioannidis [1] argued that intrinsic lo-
gical properties of the experimental process lead to very high false
positive finding rates. To do this he first assumed a model of scientific
investigation based on null hypothesis testing (NHT) and then com-
bined the mathematics of NHT with the concept of pre-study odds (that
a hypothesis is true) to produce a model with which to estimate false
positive finding rates. This approach was derived from the work of
Walcholder et al. [2] who used a very similar model to calculate the
rate of false positive hits in microarray analysis. Walcholder et al. [2]
applied their model to a finite and tightly enumerable domain defined
by the possible outcomes constrained by the dimensions of microarrays.
Ioannadis [1], by contrast, applied the model to experimental science as
such, where no such enumeration of hypotheses is possible. This leads
to a paradox, and as a result his analysis and conclusions are in-
coherent. Furthermore, they are falsified by data and are scientifically
pernicious.

The model is incoherent

The critical parameter in the Ioannidis model is R, the pre-study
odds. Ioannidis also investigates the role of bias and statistical power in
his model, but these are minor factors compared with R (see Table 4,
Ioannidis [1]). The central assumption of the Ioannidis model is that R
is a real number and can be estimated. However, although this is true
for finite systems as in the work of Walcholder et al. [2] on microarrays,
this is not the case for hypotheses across an experimental research field.

To estimate R it is necessary to first estimate a denominator defined
by the set of possible hypotheses in a field of enquiry (the numerator
will consist of the true hypotheses within that set). But what is this
exactly? Is it all conceivable hypotheses? This cannot be correct

because such a set would be infinite. Perhaps then it is all hypotheses
that are actually investigated? But how is this defined, by all hypotheses
that are thought through and written down? Or is it restricted to all
those hypotheses that are communicated to others? Or, to those that
undergo some preliminary experimental investigation, such as the tin-
kering that goes on prior even to something as formal as a pilot ex-
periment? Or, only hypotheses that are subject to a fully planned NHT
experiment? One answer to this conundrum is that the set of possible
hypotheses is restricted to those that have sufficient explanatory power
and logical consistency with other findings in the field (plausibility) to
warrant experimental testing. It is clear that restricting the set of possible
hypotheses to those that are plausible in the sense of fitting the constraints set
by existing knowledge in a research field reduces the denominator for R and
thus R increases. If this were the end of the matter, then it would lead
immediately to some interesting results: some experimental fields are
much more tightly constrained in this sense than others. For example,
theoretical physics is so highly developed that new hypotheses or the-
ories are subject to very strong logical constraints prior to even being
considered worthy of experimental testing. Einstein’s theory of General
Relativity was remarkable even before empirical testing because it
passed a very high bar set by the logical constraints of existing findings
in the field, so much so that it justified high cost experimental tests. By
contrast, in a field with relatively weak theoretical and empirical con-
straints such as social psychology, simple hypotheses consisting of little
more than proposed associations between phenomena may be admitted
for experimental testing. Furthermore, these may be relatively easily
tested by low cost experiments. Hence, R in advanced physics would
appear to be far higher than in social psychology.

However, other considerations about the logic of hypotheses lead to
an opposite conclusion and hence to a contradiction at worst, or at best
to an unsolved paradox. A hypothesis that is consistent with other
findings in a field and that explains or predicts these findings in
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addition to making some new (hence testable) predictions will be more
precise or specific than a hypothesis that does not. Vague hypotheses
with relatively indeterminate predictions (such as are the norm in
horoscopes for example) are virtually untestable because they rule out
few possible outcomes. The more informative a hypothesis, the less
probable a priori it is. A tautology is not empirically informative at all,
and has a probability of being true of 1. By contrast, a testable hy-
pothesis will rule out a number of conceivable outcomes and so be less
probably true. This means that R for the more rigorously constrained
hypothesis will be smaller than for a hypothesis in a field with weaker
constraints. To use the Einstein example again, the precision of the
predictions made by his theory and the universality of its scope means
that it rules out a great number of possible outcomes, which means that
R becomes vanishingly small. In fact, several logicians have argued
cogently that for any significant causal theory the prior probability of
its being true approaches zero [3,4].

Therefore, it can be shown that hypotheses with greater explanatory
power are both more and less probable than weaker hypotheses, and so
the concept of pre-study odds is incoherent.

The model is falsified by data

Table 4 in [1] makes explicit predictions about false positive rates in
various types of investigation. These take the form of PPV (positive
predictive values; the false positive probability is the complement of
this). The predictions for exploratory research are alarming, with false
positive rates predicted to be well over 99% even for relatively highly
powered experiments with low bias. Hence, irreproducible results are
explained by low pre-study odds irrespective of bias or experimental
standards.

Strangely, that this is not been confirmed by replication studies has
received little or no comment. Successful replication rates have been
reported that are far in excess of that predicted the Ioannidis model. In
one highly cited study that sought to replicate 100 experimental or
correlational studies [5] 36% of findings tested were reproduced, a far
greater rate than predicted by the Ioannidis model, and in a field with
relatively weak theoretical constraints (psychology). In a study that
specifically selected highly unexpected findings to replicate [6], which
according to Table 4 in Ioannidis [1] should be reproduced at a rate of
0.1–0.15%, the actual replication rate was 11%, a hundred-fold differ-
ence. Hence, Ioannidis’s model and assumptions about pre-study odds
have been falsified.

The model is pernicious

There are many reasons why experiments are not reproduced. For
example, in recent decades many researchers were unaware of the lack
of quality control for many antibody probes in commercial production.
As a result, papers were published based upon antibodies that were
subsequently challenged (e.g. [7]). This was (and is) a clear problem
with clear solutions; data sharing on quality control for antibodies
among scientists, and greater awareness of potential problems. It also
highlights the risks that come with scientific financial bubbles [8],
where rapid production of new technologies in highly funded fields
may lead to inferior quality control. Publication bias, data manipulation
and both low and high level scientific fraud are also definite problems
with various solutions. The problem of lack of checking and rechecking
of results (experimental rigour) and design problems (such as lack of
blinding when outcome measures have an element of subjectivity) are
also well known. However, all of these are quite distinct from the core
idea in the Ioannidis model, which is the overwhelming influence of
pre-study odds on experimental reproducibility. This is pernicious be-
cause it casts scepticism on experimental science as such, rather than
simply on badly carried out science. This is damaging to science, and
such claims for the invalidity of the experimental enterprise have now
extended beyond science with potential consequences for the

rationality of our society [9–11].

Making science more rigorous

The focus of the Ioannidis critique is null hypothesis testing. There
are problems with NHT that have been widely discussed, such as
widespread confusion over the difference between the likelihood of
data given a (null) model with the probability that a hypothesis is true
given a set of data. A deeper and less discussed problem with NHT lies
in its algorithmic nature. It is possible to follow the forms of NHT quite
properly, but only to test a trivial hypothesis. This is an example of
what Richard Feynman called “Cargo cult science” [12]. Hence, in this
way NHT can become an experimental box-ticking exercise and thus a
smokescreen for poor standards in other ways, such as quality control
tests of reagents or the theoretical consistency of the hypothesis [13].
Despite this, NHT has a very clear purpose in experimental research,
and that is to test the alternative explanation that results are due to
chance. NHT is not perfect for this, and other statistical approaches are
hotly debated [14] but the problem that NHT addresses is very im-
portant and the need for NHT or something like it very real.

It is therefore extremely important to understand the limited role of
NHT in science (testing for chance) and not to confuse it with the whole
of experimental science. A highly testable theory is one that rules out a
large number of possible experimental outcomes. As discussed above,
any attempt to reduce this to pre-study odds runs into a paradox, but all
this means is that the application of probabilities to causal theories is
misguided [15]. Attempts at experimental testing are properly aimed at
such theories, not only at simple hypotheses about the outcomes of
particular experiments that such theories predict. Highly testable the-
ories that over time pass tests and explain or solve research problems
are thereby corroborated and considered to be provisionally true and
scientifically significant. Ioannidis [1] acknowledges that negative re-
sults for “major concepts” are more informative than for narrow ques-
tions but does not recognise how this is related to testability as such. A
greater acknowledgement of this, and of the limits on the role and scope
of NHT in the scientific enterprise could do much to correct the iden-
tification of NHT with the whole of experimental science, the analysis
of NHT in terms of the incorrect Ioannidis model, and the crisis of
public trust in science [9–11].

Nevertheless, there is a relatively straightforward way of making
even the results of individual NHTs more reproducible, and that is to set
stringent standards on what are considered to be meaningful effect sizes
(and not just significant P values). Proposals based on reducing the
value of P that is considered significant [16] in the absence of any
consideration of effect sizes run into a paradox discussed by Lindley
[17] and Meehl [18], wherein increasing sample sizes can increase the
chance of finding significant P values but for tiny and meaningless ef-
fect sizes. This proposal has been borne out by replication studies: The
Open Science Collaboration [5] pointed out that in their results re-
plication success was better predicted by the strength of original asso-
ciations than by researcher status. Alternatively, for original studies
meaningful effect sizes can be set in advance of experiment on theo-
retical and/or practical grounds [19].

Refutational strength as a guiding principle for experimental
research

Powerful experiments are those that are not only well constructed
on experimental design principles, but also test predictions that logi-
cally follow directly from the hypothesis being tested. When this is not
the case loosely associated experiments can be performed without
strongly testing the hypothesis. For example, a theory might predict
that drugs targeting protein X can improve life expectancy in patients
with disease Y. A well performed clinical trial with hard outcomes is a
very direct test of this hypothesis. However, the predicted result for
some outcome measure for a cellular or animal model is a much less
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