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a b s t r a c t

The method of characteristics (MOC) with matrix form has more favorable performance compared with
its standard application. However, it is observed that the advantage decreases when the physical problem
size becomes larger. The spatial domain decomposition method (DDM) is a better remedy to reduce com-
putation burden for large scale problem, but increasing the outer iterations due to the decoupling
between flat source regions. To overcome this drawback, the straightforward multi-domain coupling
technique is studied and utilized in the current study based on a track truncation method (TTM). The
resulting linear system is solved using preconditioned generalized minimal residual (PGMRES) method,
a variant of Krylov subspace method. Numerical results for benchmark problems demonstrate the pro-
posed acceleration technique is efficient in terms of memory usage and computation time without com-
promising accuracy for both hexagonal and rectangular geometries. For the large scale problem, it shows
an ideal linear relationship between the memory/time required and the physical problem size rather than
quadratic growth as before.

� 2017 Published by Elsevier Ltd.

1. Introduction

The method of characteristics (MOC, Askew, 1972) has become
the most popular candidate to solve the neutron transport equa-
tion due to its excellent geometrical flexibility and natural paral-
lelism. At present, the latest developed codes and the upgraded
versions of previous software have introduced the MOC computa-
tion module to handle the arbitrary geometry for two dimension or
three dimension neutron transport problem, such as DeCART (Joo
et al., 2004), CRX (Hong and Cho, 1998), Chaplet (Kosaka and
Saji, 2000), DRAGON (Marleau et al., 2011), CASMO-4 (Smith and
Rhodes, 2002), nTRACER (Jung et al., 2009), MPACT (Kochunas
et al., 2013; MPACT-Team, 2015), OpenMOC (Boyd et al., 2014)
and so on. However, like other transport methods, the MOC
method has the disadvantage of slow convergence, therefore an
active area of research about MOC is to develop efficient accelera-
tion techniques, such as the method of coarse mesh finite differ-
ence (CMFD, see Cho et al., 2008; Tang and Zhang, 2009), or
other generalized diffusion acceleration techniques (Yamamoto,
2005; Cai et al., 2010; Zhu et al., 2016).

Derived from the recurrent characteristic sweeping operations,
the method of characteristics with matrix form (MMOC, Zhang
et al., 2011a, 2013; Wu et al., 2014) has potentially more favorable
performance compared with its traditional implementation. In this
method, the neutron scalar fluxes and boundary angular fluxes are
involved explicitly in the linear system which is determined by the
ray tracing information and cross section library. Consequently, the
characteristic sweeping operations and inner iterations have been
converted to solving the resulting linear algebraic equations. The
method of characteristic direction probabilities (CDP, Hong and
Cho, 1999; Liu et al., 2015a,b) also replaces the segment-wise
sweeping operations using a series of linear algebraic expressions,
however it keeps the inner iterations to converge the scalar flux in
each energy group, and there is no linear system to be solved. Since
these equations’ coefficient matrices are unsymmetric and sparse
in the MMOC method, the generalized minimal residual (GMRES,
Saad and Shultz, 1986) method is chosen to handle this type of
problem. Actually, the restart version of GMRES has been already
used widely to solve the neutron transport problems (Turcksin
et al., 2012; Zhang et al., 2011a). Although the algorithm has excel-
lent performance, the benefit of the matrix form of MOC would be
weakened significantly for the large scale problems. These difficul-
ties arise from two aspects, namely, the storage space and compu-
tation time.
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To compensate the mentioned defects, the spatial domain
decomposition method (DDM) and the Multitask-parallel mecha-
nism have been adopted in the MMOC program-AutoMOC (Zhang
et al., 2011a). In DDM, the entire geometry has been divided into
several subdomains, the linear algebraic system was generated
for each subdomain and solved on individual threads. These subdo-
mains were coupled by the subdomain interface angular fluxes
obtained from each thread. This technique could reduce computa-
tion time when there were not too many subdomains generated.
However, it is hard to identify that the benefits are from the
DDM or the parallelization, and there is a limitation of the number
of subdomains since the outer iterations would increase with the
increase of subdomains.

In the current paper, we analysed the temporal and spatial
properties of MOC based on the preconditioned Krylov subspace
technique, subsequently a track truncated method(TTM) was pro-
posed and verified using the benchmark problems with hexagonal
complicated geometry, i.e. HTTR benchmark problem (Zhang et al.,
2011b) and rectangular geometry, i.e. OECD/NEA C5G7 MOX
benchmark problem (Smith et al., 2003). The proposed method
truncates the long characteristic line to several shorter ‘‘subtracks”,
which are coupled through the neutron angular flux continuity
condition. In the conventional DDM, the subdomains’ coupling
was achieved by the information exchange among the activated
threads, in the proposed method the coupling relationship of the
subtracks is handled implicitly by the coefficient matrix for each
energy group. The execution mode is unchanged from the previous
code, namely, there is no additional modification to the previous
procedures except for the inexpensive computation and post-
processing for the track tracing.

The remainder of this paper is organized as follows: Section 2
describes the methodologies of this work, including the details
about other essential techniques implemented in the current
study, Section 3 displays the numerical experiments for the verifi-
cation and evaluation of the proposed method, Section 4 makes the
conclusions for the present work.

2. Theoretical model

2.1. Matrix characteristics method

The MOC method solves the characteristic form of the transport
equation by following the straight neutron paths of the neutral
particle:

dwðsÞ
ds

þ RtðsÞwðsÞ ¼ qðsÞ ð1Þ

where w is the neutron angular flux; s is the local coordinate along
the track. If the cross-section Rt and neutron source q are both
assumed to be constants in a fine region i, the track’s outgoing
angular flux can be expressed as a source term and incident angular
flux for the flat source region i:

wout
i;k ¼ win

i;k expð�Rt;isiÞ þ qi

Rt;i
½1� expð�Rt;isiÞ� ð2Þ

where win
i;k and wout

i;k are the incident and outgoing angular fluxes of
track k on the region i, respectively; s is the segment length.

It is natural to obtain the outgoing flux with a known incident
flux win

k on the boundary by using Eq. (2) recursively:

wout
I;k ¼ win

k e0;I þ
XI

j¼0

qj

Rt;j
1� exp �Rt;jsj

� �� �
ejþ1;I ð3Þ

where 0 and I denote the ID numbers of the first flat source region
(FSR) and the last FSR traversed by track k; s is the segment length;

qj represents the neutron source in region j crossed by this track; ej;I
represents the exponential attenuation coefficient from region j to I
along the track k. They can be obtained by Eq. (4):

qg
j ¼

XG
g0¼1

Rj;s;g0g/j;g0 þ vj;g
keff

XG
g0¼1

ðmRÞj;f ;g0/j;g0

ej;I ¼ exp �Rt;jsj �Rt;jþ1sjþ1 . . .� Rt;I�1sI�1
� �

8>><>>: ð4Þ

If the wout
I;k in Eq. (3) is the outgoing flux on the boundary, the K

linear equations can be obtained through applying the boundary
condition to all tracks (assuming K tracks in total). It should be
noted that only the vacuum and albedo boundary conditions are
considered in the current work. Transforming the K equations into
operator form, one can obtain:

S1Uþ ðEþ S01ÞW ¼ �S001Q ð5Þ
where U;W and Q are the vectors of scalar fluxes, incident fluxes on
the boundaries and sources(including the scattering source from
other energy groups and the fission source), respectively; S1; S

0
1

and S001 are the sweeping matrices of dimension K � L;K � K and
K � L, respectively; L;K are the numbers of regions and tracks,
respectively; E stands for the diagonal matrix which indicates the
mapping relationship between tracks on the outer boundaries.

The segment average angular flux can be computed from the
incident flux and the region’s source term, further, the region aver-
age angular flux can be calculated in terms of the ‘‘width” of the
segments and their average angular fluxes. After computing the
weighted sum of the whole region average angular fluxes located
in region i, the scalar flux of region i can be generated:

/i ¼ f 1ðqiÞ þ
X
k2i

f 2ðwin
k Þ þ

X
j2upðiÞ

f 3ðqjÞ
" #

ð6Þ

where f 1; f 2 and f 3 represent the response functions; k 2 i refers to
the tracks traversing the region i; and j 2 upðiÞ refers to the regions
in the up-streaming direction of region i.

After leaving only the source term on the right hand side and
rearranging Eq. (6), by taking all the flat source regions into
account, another L linear equations with operator form can be
obtained:

ðS2 þ D2ÞUþ S02W ¼ �S002Q ð7Þ
where S2 denotes the L� L sweeping matrix for the scalar flux con-
tribution between fine regions; S02 represents the L� K sweeping
matrix involving the incident angular flux contribution; S002 is the
L� L sweeping matrix for the source contribution between fine
regions; D2 is a L� L diagonal matrix whose elements are the differ-
ences between the transport and self-scattering cross sections. The
Eqs. (5) and (7) can make up the closed linear algebraic system Eq.
(8), which is the typical operator form of MMOC (Zheng et al., 2017)
and is the resulting system to be solved iteratively using a precon-
ditioned Krylov subspace technique:

S2 þ D2 S02
S1 S01 þ E

" #
U

W

� �
¼ � S002

S001

" #
Q ð8Þ

2.2. Computation complexity

Based on the aforementioned method, the coefficient matrix
composed of S1; S2; S

0
1; S

0
2; E and D2 would be sparse and irregular

undoubtedly. In order to take advantage of the large number of
zero elements, the compressed sparse row format (CSR, see Saad,
2003) was chosen as the storage scheme. In this scheme, the
matrix construction involves three steps: building the matrix
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