
Parallel non-divergent flow accumulation for trillion cell digital
elevation models on desktops or clusters

Richard Barnes
Energy & Resources Group, Berkeley, USA

a r t i c l e i n f o

Article history:
Received 15 August 2016
Received in revised form
4 February 2017
Accepted 20 February 2017

Keywords:
Parallel computing
Hydrology
Geographic information system (GIS)
Upslope area
Contributing area

a b s t r a c t

Continent-scale datasets challenge hydrological algorithms for processing digital elevation models. Flow
accumulation is an important input for many such algorithms; here, I parallelize its calculation. The new
algorithm works on one or many cores, or multiple machines, and can take advantage of large memories
or cope with small ones. Unlike previous parallel algorithms, the new algorithm guarantees a fixed
number of memory access and communication events per raster cell. In testing, the new algorithm ran
faster and used fewer resources than previous algorithms, exhibiting � 30% strong and weak scaling
efficiencies up to 48 cores and linear scaling across datasets ranging over three orders of magnitude. The
largest dataset tested had two trillion (2$1012) cells. With 48 cores, processing required 24 min wall-time
(14.5 compute-hours). This test is three orders of magnitude larger than any previously performed in the
literature. Complete, well-commented source code and correctness tests are available on Github.

© 2017 Elsevier Ltd. All rights reserved.

1. Software

Complete, well-commented source code, an associated make-
file, and correctness tests are available at https://github.com/r-
barnes/Barnes2016-ParallelFlowAccum. The code is written in
Cþþ using MPI and constitutes 2131 lines of code of which 58% are
or contain comments.

This algorithm is part of the RichDEM (https://github.com/r-
barnes/richdem) terrain analysis suite, a collection of state of the
art algorithms for processing large digital elevation models quickly.

2. Introduction

Digital elevation models (DEMs) are representations of terrain
elevations above or below a chosen zero elevation. Raster DEMs, in
which the data are stored as a rectangular array of floating-point or
integer values, are widely used in geospatial analysis for estimating
a region's hydrologic and geomorphic properties, including soil
moisture, terrain stability, erosive potential, rainfall retention, and
stream power. Many such analyses require that every cell in a DEM
have an associated flow accumulation (otherwise known as

upslope area, contributing area, and upslope contributing area).
Informally, if there were a rain storm, flow accumulation is directly
proportional to the total amount of water which would pass
through a cell as it flowed downhill from higher elevations.

DEMs have increased in resolution from 30 to 90 m in the recent
past to the sub-meter resolutions becoming available today.
Increasing resolution has led to increased data sizes: current DEMs
are on the order of gigabytes and increasing, with billions of cells.
Even in situations where only comparatively low-resolution data
are available, a DEM may cover large areas: 30 m Shuttle Radar
Topography Mission (SRTM) elevation data has been released for
80% of Earth's landmass (Farr et al., 2007). While computer pro-
cessing and memory performance have increased appreciably,
development of algorithms suited to efficiently manipulating large,
continent-scale DEMs is on-going.

If a DEM can fit into the RAM of a single computer, several al-
gorithms exist which can efficiently calculate flow accumulation
(Barnes et al., 2014b; Mark, 1988). If a DEM cannot fit into the RAM
of a single computer, other approaches are needed. This paper
presents such an approach.

Formally, the flow accumulation A of a point p is defined as

E-mail address: richard.barnes@berkeley.edu.

Contents lists available at ScienceDirect

Environmental Modelling & Software

journal homepage: www.elsevier .com/locate/envsoft

http://dx.doi.org/10.1016/j.envsoft.2017.02.022
1364-8152/© 2017 Elsevier Ltd. All rights reserved.

Environmental Modelling & Software 92 (2017) 202e212

Delta:1_given name
https://github.com/r-barnes/Barnes2016-ParallelFlowAccum
https://github.com/r-barnes/Barnes2016-ParallelFlowAccum
https://github.com/r-barnes/richdem
https://github.com/r-barnes/richdem
mailto:richard.barnes@berkeley.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2017.02.022&domain=pdf
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
http://dx.doi.org/10.1016/j.envsoft.2017.02.022
http://dx.doi.org/10.1016/j.envsoft.2017.02.022
http://dx.doi.org/10.1016/j.envsoft.2017.02.022

AðpÞ ¼ wðpÞ þ
X

n2N ðpÞ
aðn; pÞAðnÞ (1)

where wðpÞ is the amount of flow which originates at the cell p.
Frequently this is taken to be 1, but the value can also vary across a
DEM if, for example, rainfall or soil absorption differs spatially. The
summation is across all of the cell's neighbours N ðpÞ. aðn; pÞ rep-
resents the fraction of the neighbouring cell's flow accumulation
AðnÞ which is apportioned to p. Flow may be absorbed during its
downhill movement, but may only be increased by cells, so a is
constrained such that

P
paðn;pÞ � 1cn.

To calculate flow accumulation, a DEM is used to construct a
directed acyclic graph of flow directions. The flow directions
determine what fraction of the flow originating in and passing
through a cell is apportioned to each of its neighbours. Though
there are many ways of determining this, all flow metrics can be
characterized as being either divergent or non-divergent. Non-
divergent metrics, such as D8 (O'Callaghan and Mark, 1984) and
r8 (Fairfield and Leymarie, 1991), apportion a cell's flow to a
single one of its neighbours. As a corollary, with such metrics two
streams which join will never split apart and every cell's flow
exits the DEM through a single downstream cell. Divergent
methods such as D∞ (Tarboton, 1997) and MFD (Freeman, 1991)
apportion a cell's flow to at most two and possibly many
neighbours, respectively. As a corollary, with such metrics
streams may bifurcate and a cell's flow may exit the DEM
through many downstream cells. The one-to-many property of
divergent flows makes developing divide-and-conquer ap-
proaches difficult, so only non-divergent metrics are considered
here. Relatedly, most forms of absorption represent a simple
extension of the algorithm presented here. Therefore, I consider
only the case where aðn; pÞ ¼ f0;1g; that is, I consider only non-
divergent flow metrics in which flow is directed to a single
downstream neighbour.

Often, flow directions must be calculated only after internally-
draining regions of a DEM called depressions (see Lindsay, 2016
for a typology) have been eliminated. This can be done in one
of two ways. (1) The depressions can be filled to the level of their
lowest outlets. Barnes (2016) discusses an efficient method for
doing so on rather large DEMs using methods based on the
Priority-Flood (Barnes et al., 2014b). (2) Depressions that are
small or shallow enough can be breached, as in Lindsay (2016).
See Barnes (2016) for a review of depression-filling in large
DEMs.

In addition to depression-filling, flats (areas of a DEM with no
local relief) must be assigned flow directions. This can be done by
either (a) routing flow towards only lower terrain (Jenson and
Domingue, 1988; Barnes et al., 2014b) or (b) routing flow both
away from higher terrain and towards lower terrain (Barnes et al.,
2014a; Garbrecht and Martz, 1997). Here the former option is
chosen for computational efficiency. The choice of algorithms for
depression filling and flat resolution do not affect any of the details
of how flow accumulation is calculated.

Existing algorithms (Gomes et al., 2012; Do et al., 2011;
Y€A±ld€A±r€A±m et al., 2015; Arge et al., 2003; Tesfa et al., 2011;
Wallis et al., 2009; Danner et al., 2007; Metz et al., 2011, 2010;
Lindsay, 2016; Yao and Shi, 2015) have taken one of two ap-
proaches to DEMs that cannot fit entirely into RAM. They either
(a) keep only a subset of the DEM in RAM at any time by using
virtual tiles stored to a computer's hard disk or (b) keep the

entire DEM in RAM by distributing it over multiple compute
nodes which communicate with each other. Barnes (2016) re-
views the designs of these algorithms and argues that both of
these approaches scale poorly due to the high costs of disk access
and/or communication; in contrast, the new algorithm pays
much lower costs.

The algorithm presented here is superior to previous ap-
proaches because it can (a) guarantee locality, ensuring that each
DEM cell is accessed a fixed number of times, regardless of the size
or content of the DEM; (b) guarantee that all compute nodes remain
fully utilized; (c) operate using fewer nodes thanwould be required
to hold the entire DEM; and (d) it requires only a fixed number of
low-cost communication events.

These improvements mean that the new algorithm can easily
process datasets which may have been infeasible in the past. I
demonstrate this on a trillion cell DEM. After ruling out “gargan-
tuan”, I follow Barnes (2016) in referring to this new size class as
being rather large.

3. The algorithm

The algorithm assumes that non-divergent flow directions have
been previously determined by a separate algorithm of the user's
choice. Depressions and flats may or may not be present. The al-
gorithm then efficiently calculates Equation (1) based on these flow
directions. Since I am considering DEMs which are generally too
large to fit into RAM all at once, tiles will be used to calculate in-
termediate solutions which, together, can be used to construct a
global solution. Although the algorithm is described and imple-
mented in terms of an 8-connected raster, other topologies, such as
hexagonal DEMs, could be used.

The algorithm has a single-producer, multiple-consumer
designdone process produces tasks, delegates them, and ag-
gregates results, while all the other processes handle the tasks
produceddwhich proceeds in three stages. (1) The producer al-
locates tiles to the consumers, which calculate an intermediate
based on the tile and pass a small amount of information about
the intermediate back to the producer. (2) Based on this data, the
producer calculates the information needed for each consumer to
independently produce its share of a global solution. This infor-
mation takes the form of a flow accumulation offset. (3) It pro-
vides this offset to the consumers, which modify their
intermediates based on it. The modified intermediates collec-
tively form the global solution. This design is effectively two
sequential MapReduce operations and is general enough to be
implemented with either threads or processes using any of a
number of technologies including OpenMP, MPI, Apache Spark
(Zaharia et al., 2010), or MapReduce (Dean and Ghemawat, 2008).
Here, I use MPI.

The third stage of the algorithm modifies intermediates gener-
ated by the first stage. But this modification cannot take place until
after the second stage has completed. There are three strategies for
caching these intermediates which affect both the speed and the
memory requirements of the algorithm as awhole. These strategies
are as follows. (a) The EVICT strategy: a consumer evicts its in-
termediates from RAM and works on other tiles. This option uses
the least RAM and disk space, but requires recalculation of the in-
termediates later. (b) The CACHE strategy: a consumer writes its in-
termediates to disk in a compressed form (despite the processing
requirements, this is faster than storing the data uncompressed
(Barnes, 2016)) and works on other tiles. CACHE use the same RAM as

R. Barnes / Environmental Modelling & Software 92 (2017) 202e212 203

https://isiarticles.com/article/155518

