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a b s t r a c t 

This paper suggests a rather efficient architecture for an error correction unit of a residue number system 

(RNS) that is based on a redundant RNS (RRNS) and applied in parallel data processing structures ow- 

ing to its capability to improve information stability in calculations. However, the high efficiency of error 

correction is still not achieved due to the need in the expensive and complex operators that require sub- 

stantial computational resources and considerable execution time. The suggested error correction method 

employs the Chinese remainder theorem (CRT) and artificial neural networks (ANN) that appreciably sim- 

plify the process of error detection, localization and correction. The key components of the error correc- 

tion procedure are optimized using (a) the mixed radix conversion (MRC), i.e., the parallel conversion of 

the numbers from an RNS into the mixed radix number system (MRNS), and (b) the adaptation of neural 

networks to different sets of RNS moduli (bases) and also to the modular arithmetic during the com- 

putation of modular number projections and the restoration of the correct residue on a faulty module. 

Therefore, the expensive topological structures of neural networks are replaced with the reconfiguration 

using the weight coefficients switching. In comparison with the existing CRT-based method of projection 

calculation, the suggested method yields a 20%–30% reduction in power consumption, yet requiring by 

10%–20% less FPGA resources for implementation. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Nowadays the reliability of modular neurocomputing systems 

forms a challenging problem due to the growing complexity of 

their structure and functions. The reliability improvement problem 

is burning for the neurocomputers embedded in aerospace and air- 

borne systems, cloud computing, security systems, digital closed 

circuit systems, control systems for crucial processes and objects, 

and so on [1–7] . 

High reliability must be achieved by further development of the 

element base of computing devices but, in the first place, by using 

coding methods with stability against random failures (or distor- 

tions) and dynamic data correction in the course of calculations if 

necessary. 

Over the past few years the researchers have studied the de- 

tection and localization of faulty digits in modular computers 
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[1–5] . However, the existing error correction approaches do not use 

residue number systems (RNS) together with artificial neural net- 

works (ANN), which have high efficiency. A separate error in any 

element of a computing structure may cause an incorrect result of 

calculations. And so, it seems fruitful to design methods for fast er- 

ror detection, localization and correction that guarantee a correct 

result. This feature is vital for the systems with high-integrity com- 

ponents such as Field-Programmable Gate Arrays (FPGAs) that are 

widespread in modern computing system design. 

Modern computational tasks more and more require parallel 

data processing, also increasing the demand for multidigit com- 

puting devices. In this field of research, a promising approach is 

to apply residue number systems [1–5] , which have powerful po- 

tential of high-speed and reliable data processing consistent with 

the parallel computing base in form of artificial neural networks. 

Of special interest are redundant residue number systems 

(RRNSs) subject to error detection and correction [2] . There ex- 

ist many publications considering RRNSs as a tool to restore an 

integer from a set of its remainders [3–7] . Error detection and 
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correction codes involve such notions as admissible (legal) range 

and inadmissible (illegal) range, which are used to check numbers 

[3] . 

It is possible to distinguish between two main methods of error 

correction in a redundant residue number code. The first method 

calculates an error syndrome obtained by extending RNS bases (or 

moduli) and then compares them with a set of expected results in 

order to restore a correct number. Similar algorithms were stud- 

ied in [2,5] . The papers [8–10] analyzed single errors correction 

with different modifications of the error syndrome method (still, 

the general principles remain the same). Next, the papers [10–

12] were focused on multiple errors correction. In particular, error 

syndromes in [12] were calculated by a special algorithm requir- 

ing a complex computational scheme and time-consuming calcula- 

tions. 

The second method calculates errors from the remainders of 

RNS numbers using the Chinese Remainder Theorem [13–16] . For 

example, the algorithm suggested in [13] performs single errors 

correction based on the general idea of the projection method. The 

paper [14] considered a multiple errors correction algorithm by ex- 

tending the approach from [13] . The authors [15] presented other 

algorithms using the same strategy. 

The multiple errors correction method developed in [14] pro- 

ceeds from the CRT. Original numbers are found using an iterative 

process that defines a faulty combination of modular number re- 

mainders within an admissible range. This method has restrictions 

due to the modification of the maximum probability decoding al- 

gorithm and use of the Garner algorithm, which increases time de- 

lays and hardware costs. Besides, there is no analytical expression 

for the number of iterations required to define an original num- 

ber, while experimental calculations may yield a wrong number of 

checked situations that have to be rechecked. 

Although the cited researchers propose certain modifications, 

the general principles remain the same. Direct analysis shows that 

all methods employed actually calculate the values of numbers ac- 

cording to the CRT or MRNS algorithms, thereby being computa- 

tionally intensive. 

In the current paper, we present a new error correction scheme 

based on the second method. This scheme resembles the ones 

given in [13–16] . However, the new scheme is simpler owing to 

the optimized projection calculation and error correction using an 

appropriate reconfiguration of artificial neural networks. 

Ideologically, this algorithm is simple in the sense of appli- 

cation. Moreover, the theory and principles of the suggested er- 

ror correction scheme can be used for its further improvement in 

terms of efficiency (i.e., less intensive calculations). 

2. Corrective capabilities of residue number system codes 

Consider the geometrical model of an RNS code, which is based 

on a set of unit n -dimensional cubes. Each RNS representation of a 

number that forms code combinations is associated with the ver- 

texes of the unit n -dimensional cubes whose code points 

A 0 

(
A 0 mod p 1 , A 0 mod p 2 , . . . , A 0 mod p n 

)
A 1 

(
A 1 mod p 1 , A 1 mod p 2 , . . . , A 1 mod p n 

)
. . . 

A p 

(
A p mod p 1 , A p mod p 2 , . . . , A p mod p n 

) (1) 

form P n = p 1 p 2 . . . p n vertexes. 

The number of the n -dimensional cubes is N = 

( p 1 − 1 )( p 2 − 1 ) . . . ( p n − 1 ) . 

Let the surface of the unit n -dimensional cubes have the prop- 

erty that any two vertexes on it can be connected by finite-length 

lines. Then for each pair of vertexes A i and A j on the surface of the 

n -dimensional cubes there exists a lower bound for the lengths of 

the lines lying on this surface and connecting these points. The 

lower bound of the lengths is the distance between the points A i 

and A j , further denoted by d A i A j . The distance defined in this way 

satisfies the three basic laws of a metric, i.e., d A i A j ≥ 0 , d A i A j = d A j A i , 

and d A i A j = d A i A k + d A k A j . 

Each set P n of RNS complexes in which for any pair of its ele- 

ments (points) A i and A j there is a well-defined number d A i A j sat- 

isfying the three basic laws of a metric is called a metric space. 

In this case, the function d A i A j is called the metric of this space, 

and its value for a certain pair of points (vertexes) of the unit n - 

dimensional cubes is called the distance between these points. 

In the introduced metric, one error modifies one coordinate of 

the code point, two errors two coordinates, … , and k errors k co- 

ordinates. A single-base error changes one coordinate by the value 

�i (the depth of this error). The distance between the two ver- 

texes A i and A j of the unit n -dimensional cubes can be defined as 

the least number of edges that have to be passed while moving 

from the vertex A i to the vertex A j . In terms of distance, the adja- 

cent edges that define the depth of a single-base error are treated 

as one edge. Note that it is possible to move along the edges of a 

given n -dimensional cube and also along the edges of the neighbor 

cubes (right, left, top, and bottom). 

Best visualization is provided by the geometrical model for the 

RNS codes with three bases p 1 = 2 , p 2 = 3 , and p 3 = 5 , where p 1 
and p 2 denote informational (working) bases and p 3 acts as a check 

base. Then the working range is P 2 = p 1 p 2 = 6 , and the complete 

range is P 3 = p 1 p 2 p 3 = 30 . In this case, a number A is uniquely 

defined by a representation ( α1 , α2 ), and the digit α3 can be 

considered redundant. The input alphabet consists of P 3 symbols 

( 0 , 1 , . . . , 29 ) . Then the word length of the RNS code that rep- 

resents and transfers all symbols of this alphabet is A ( α1 , α2 , α3 ), 

where α1 = 0 , 1 ; α2 = 0 , 1 , 2 ; α3 = 0 , 1 , 2 , 3 , 4 . 

The depth of the single-base errors is �1 = 1 (for the first base) 

or may vary from �2 = 1 to �2 = 2 (for the second base) and from 

�3 = 1 to �3 = 4 (for the third base). Each symbol is represented 

by three decimal digits. The values of the digits belong to the range 

0 ≤ αi ≤ p i − 1 , where i = 1 , 2 , 3 . 

Assume that data processing employs binary codes. Then the 

binary code used in the representation and processing of each digit 

has the digit capacity 

m i = � log 2 p i � + 1 , (2) 

where � X � indicates the largest integer less than X . 

In our example, m 1 = 1 , m 2 = 2 , and m 3 = 3 . 

Thus, the first, second and third digits of RNS are represented 

using one, two, and three binary digits, respectively. With binary 

codes, any number is represented by six binary digits. In this case, 

each of represented numbers can be identified with a vertex of 

the unit cube in the space whose points have the coordinates 

A i mod p 1 , A i mod p 2 , and A i mod p 3 . This geometrical model of 

an RNS code is illustrated by Fig. 1 , with coordinates specified for 

each vertex. 

Axis x has one unit segment corresponding to the module p 1 ; 

axis y two unit segments corresponding to the module p 2 ; finally, 

axis z four unit segments corresponding to the module p 3 . 

The distance between different code combinations (vectors) 

varies from 1 to n , where n denotes the number of moduli (in our 

example, n = 3 ). For instance, the distances between the points are 

d A 0 A 10 
= 1 , d A 0 A 25 

= 2 , and d A 0 A 1 = 3 . The distance between neigh- 

bor numbers that differ by 1 is n . This follows from the count-up 

or countdown rule. In the case of count-up, transition from a given 

number to the nearest large number is performed by replacing the 

existing digit with the closest admissible digit; for this position 
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