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a b s t r a c t

Understanding how landscape pattern determines population or ecosystem dynamics is crucial for
managing our landscapes. Urban areas are becoming increasingly dominant social-ecological systems, so
it is important to understand patterns of urbanization. Most studies of urban landscape pattern examine
land-use maps in two dimensions because the acquisition of 3-dimensional information is difficult. We
used Brista software based on Quickbird images and aerial photos to interpret the height of buildings,
thus incorporating a 3-dimensional approach. We estimated the feasibility and accuracy of this approach.
A total of 164,345 buildings in the Liaoning central urban agglomeration of China, which included seven
cities, were measured. Twelve landscape metrics were proposed or chosen to describe the urban land-
scape patterns in 2- and 3-dimensional scales. The ecological and social meaning of landscape metrics
were analyzed with multiple correlation analysis. The results showed that classification accuracy
compared with field surveys was 87.6%, which means this method for interpreting building height was
acceptable. The metrics effectively reflected the urban architecture in relation to number of buildings,
area, height, 3-D shape and diversity aspects. We were able to describe the urban characteristics of each
city with these metrics. The metrics also captured ecological and social meanings. The proposed land-
scape metrics provided a new method for urban landscape analysis in three dimensions.

© 2017 Published by Elsevier Ltd.

1. Introduction

Understanding how landscape pattern determines population
or ecosystem dynamics is crucial for managing our landscapes
(Kareiva & Wennergren, 1995). Landscape metrics were proposed
to describe landscape pattern and to further exploring linkages
with processes (Krummel, Gardner, Sugihara, O'Neill, & Coleman,
1987; O'Neill et al., 1988). Numerous landscape metrics have been
developed since the 1980s (Lausch et al., 2015; Turner, 2005).
Software has been developed to streamline the calculation of
landscape metrics (Mcgarigal, 1995). Landscape metrics are usually
calculated using land-use/cover or landscape category maps, which
are projected in 2-D from real topography. These methods for
landscape pattern analysis are not designed to include topography
as a pattern-shaping factor.

Ecological research provides ample evidence that topography
can exert a significant influence on the processes shaping broad-

scale landscape vegetation patterns. There is also an increasing
body of knowledge on how topography influences the frequency,
spread, extent, and distribution of natural disturbances such as fire,
pathogens, and geomorphic events across the landscape (Butler &
Walsh, 1994; Hadley, 1994; Knight, 1987; Romme & Knight, 1981).
Some researchers have tried to analyze pattern and dynamics in
landscapes with surface landscape metrics; (Dorner, Lertzman, &
Fall 2002; McGarigal, Tagil, & Cushman, 2009; Wu, Wei, & Lv,
2012; Zhang, Van Coillie, De Clercq, Ou, & De Wulf, 2013), and
distribution of natural disturbances across the landscape (Kellogg,
McKenzie, Peterson, & Hessl, 2008; Moniem & Holland, 2013;
Rogers, Cooper, McKenzie, & McCann, 2012; Zhang et al., 2013).

Landscape ecology research could help quantify the effect of
topography on different aspects of landscape pattern. Unfortu-
nately, the theoretical framework of landscape ecology to date does
not provide a well-developed methodology for analyzing pattern
and dynamics in landscapes with strong topography, or, more
generally speaking, landscapes with a strong underlying physio-
graphic structure. New methods are required to address research
questions arising from the interplay between the physical terrain
and ecosystem dynamics (Dorner et al., 2002).
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Most of the surface landscape pattern studies choose natural
landscapes with strong topography (Wu et al., 2012). The urban
landscape is one of the most complex and spatial heterogeneous
surface landscapes. Urban buildings form a highly suitable study
area on which to test landscape pattern analysis methods and to
study the relationship between landscape pattern and process.
However, few studies have focused on the urban architecture
landscape due to the difficulty of data acquisition.

Three-dimensional data on architecture can be obtained by
three methods: original building plans, field surveys and remote
sensing (RS) technology. Original building plans contain detailed
information, but spatial information is usually absent and difficult
to collect. Height and location information can be obtained through
field surveys; however, these are time-consuming. RS technology
makes it possible to interpret architectural characteristics in 3-D
relatively quickly. Various RS data sources have been used for
extracting information on urban buildings, such as aerial images
(Suveg & Vosselman, 2002), Light Detection And Ranging (LIDAR)
data (Alexander, Smith-Voysey, Jarvis, & Tansey, 2009; Awrangjeb,
Ravanbakhsh,& Fraser, 2010; Yu, Liu, Wu, Hu,& Zhang, 2010), high-
resolution satellite imagery (Jinliang & Xiaohua, 2009; Khosravi,
Momeni, & Rahnemoonfar, 2014; Mayer, 1999; Sumer & Turker,
2013), synthetic aperture radar (SAR) images (Ok, 2013; Soergel,
Michaelsen, Thiele, Cadario, & Thoennessen, 2009; Tupin & Roux,
2003) and point cloud data based on Unmanned Aerial Vehicles
(UAV)(Erginer & Altug, 2012; Fonstad, Dietrich, Courville, Jensen, &
Carbonneau, 2013; Rosnell & Honkavaara, 2012). LIDAR data, SAR
images and point cloud data are themost appropriate for extracting
building information. However, the data are not always available in
large scale study, especially in the developing countries, because of
discontinuous data-collection periods and high prices.

Several approaches for extracting building characteristics with
high-resolution aerial and satellite images have been proposed,
such as humanecomputer interaction (Gülch, 1997; Heuel &
Nevatia, 1995), matching of grouping-based stereo images
(Mohan & Nevatia, 1989), 3-D-interpretation of mono images using
shadows (Shufelt, 1996), building extraction from digital surface
models (Weidner, 1997), matching of primitives in multi-images
(Henricsson, 1998), and monoplotting methods (Mikhail, Bethel,
& McGlone, 2001, p. 215).

Monoplotting is a photogrammetric procedure that enables 3-D
feature extraction of objects from single images where an under-
lying digital elevation model (DEM) representing the bare earth
excluding vegetation and buildings is available (Mikhail et al., 2001,
p. 215). Satellite image data from IKONOS and QuickBird can be
used for mapping in monoplotting methods. The monoplotting
technique has shown that a height extraction accuracy of 0.9 m can
be achieved with a single ground control point using the Rational
Polynomial Coefficients (RPC, a sensor orientation model) bundle
adjustment from IKONOS or QuickBird images (Fraser& Yamakawa,
2004).

Our specific objectives were to: (1) test the accuracy of archi-
tecture height measurements with high-resolution satellite imag-
ery (HRSI) and the Brista software; (2) build metrics to describe 3-D
spatial patterns and check their validity; and (3) analyze the urban
architecture characteristics of seven cities in the Liaoning central
urban agglomeration.

2. Materials and methods

2.1. Study area

The study area (40�010-43�290N, 122�110-125�460E) is located in
Liaoning Province, Northeast China, with an area of 6.5 � 104 km2,
constituting 44.5% of the total area of Liaoning Province. The study

area lies in the transition zone between a branch of the Changbai
Mountains and the flood plain of the Liao River in China. The
eastern part of the watershed consists of low hills, while the middle
and western parts are located on an alluvial plain. The seven study
cities in the Liaoning central urban agglomeration were Shenyang,
Anshan, Benxi, Fushun, Liaoyang, Tieling and Yinkou (Fig. 1). She-
nyang is the central city, and the capital of Liaoning Province. The
population of the study area was 21.7 million in 2014. With the
growth of population and industry, the urban proportion of the
study area has increased continuously. At same time, many area
with low buildings have been replaced with high-rise architecture.

2.2. Data

QuickBird images (cell size of 0.61 m) of the seven cities were
collected in 2013 (Table 1). The 3-D architectural data of the study
area were extracted from the QuickBird images using the software
package Brista. Brista was developed by the University of Mel-
bourne and supports the photogrammetric processing of HRSI data
and monoplotting functions. Monoplotting is a semi-automated
approach for 3-D reconstruction from satellite images.

The software package Brista was developed by the Department
of Geomatics at the University of Melbourne, and at the Cooperative
Research Centre for Spatial Information for extracting 3-D infor-
mation based on HRSI data with both RPC bundle adjustment and
monoplotting functions via visual interpretation (Willneff, Poon, &
Fraser, 2005). The Brista software has the characteristics of a low
need for professional knowledge, simple operation, high extraction
accuracy and easy data access.

After defining the bias-free sensor orientation, accurate 3-D
information can be extracted from HRSI via Brista's monoplotting
function. The monoplotter solves the planimetric position via least-
squares estimation with the final height determined through
interpolation from the DEM. To calculate the 3-D position of a point,
an initial height value (e.g., the average of the maximum and
minimum heights in the DEM) is required to determine a pre-
liminary planimetric position. From this position, a new height
value is interpolated from the DEM. Iterations terminate when the
position is below a certain convergence limit. The detailed inter-
pretation steps for 3-D architectural data for each building,
including the building outline and height, can be found in Willneff
et al. (2005). A total of 66,978, 34,686,19,563, 26,166,15,597,10,379,
and 19,021 buildings were measured for Shenyang, Anshan, Benxi,
Fushun, Liaoyang, Tieling and Yinkou, respectively. The height for
each building was extracted from Quickbird images and Brista
software. The height of each story for residential buildings is 2.8 m
in China. We could not distinguish building type, so the number of
stories took the integer of building height divided 2.8 due to first
floor of some buildings were higher than 2.8 m. The accuracy of
interpretation based on very high resolution satellite imagery can
be estimated with cartographic maps 1:1000 or 1:500 (Freire et al.,
2014). Due to the absence of the cartographic maps in study area,
the actual heights of 815 different buildings across the seven cities
were measured in 2013 using a LaserCraft Contour XLRic for ac-
curacy estimation. The overall mean height deviation was 1.02 m.
The mean building height was 9.13 m. The aggregated accuracy was
88.82%, which was suitable for 3-D urban pattern recognition. The
accuracies in Shenyang, Anshan, Benxi, Fushun, Liaoyang, Tieling
and Yinkou were 90.03%, 88.62%, 89.34%, 88.06%, 89.33%, 88.09%
and 88.76%, respectively.

2.3. Metrics

Twelve metrics were selected (Table 2), which reflected aspects
of the number of buildings and number of high buildings, area
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