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A B S T R A C T

The approximate number system (ANS) is an innate cognitive template that allows for the mental representation
of approximate magnitude, and has been controversially linked to symbolic number knowledge and math ability.
A series of recent studies found that an approximate arithmetic training (AAT) task that draws upon the ANS can
improve math skills, which not only supports the existence of this link, but suggests it may be causal. However,
no direct transfer effects to any measure of the ANS have yet been reported, calling into question the mechanisms
by which math improvements may emerge. The present study investigated the effects of a 7-day AAT and
successfully replicated previously reported transfer effects to math. Furthermore, our exploratory analyses
provide preliminary evidence that certain ANS-related skills may also be susceptible to training. We conclude
that AAT has reproducible effects on math performance, and provide avenues for future studies to further ex-
plore underlying mechanisms - specifically, the link between improvements in math and improvements in ANS
skills.

1. Introduction

The approximate number system (ANS) is a primitive cognitive
system present across many species, both human and non-human alike.
It endows the individual with an intuitive, albeit approximate, under-
standing of magnitude, and underlies such common human faculties as
estimating the number of apples on a tree or the number of jelly beans
in a jar. This ability is apparent even in human infants prior to the onset
of any formal numerical instruction, and is thought to provide a natural
template upon which to build an understanding of symbolic numbers
(Lipton & Spelke, 2005; Mundy & Gilmore, 2009; Piazza, 2010).

Much behavioral evidence supports a close link between the re-
presentation of ANS numerosities and exact symbolic numbers, and
suggests that the two share similar behavioral signatures. Most notably,
both are susceptible to numerical distance effects such that identifying
the larger of two quantities is more difficult the closer the quantities are
together. For example, in a prototypical dot comparison task to measure
ANS acuity, discriminating an array of 10 dots from an array of 12 is
harder than discriminating 10 from 20 dots, and this distance effect can
be observed in terms of both increasing reaction time as well as de-
creasing accuracy the smaller the ratio between the two dot arrays
becomes (Dehaene, Dehaene-Lambertz, & Cohen, 1998). Similarly, a

symbolic distance effect has robustly demonstrated longer reaction time
latencies when identifying the larger of two closely spaced numbers
such as 5 and 6, as opposed to relatively more distant numbers such as 5
and 9 (Moyer & Landauer, 1967). Additionally, controlling for the nu-
merical distance between two quantities, a size effect also exists in that
larger numbers or numerosities are more difficult (i.e., longer reaction
times) to distinguish than smaller ones (Buckley & Gillman, 1974;
Dehaene et al., 1998).

Taking this relationship one step further, the acuity of the ANS has
also been shown to predict formal math ability (reviewed in Feigenson,
Libertus, & Halberda, 2013). This relationship has been mainly ex-
plored in young children (Libertus, Feigenson, & Halberda, 2013a,
2013b; Odic et al., 2016), but exists throughout the school years
(Halberda, Mazzocco, & Feigenson, 2008), and even correlates with
SAT and GRE quantitative scores in adolescents and young adults
(Dewind & Brannon, 2012; Libertus, Odic, & Halberda, 2012; Wang,
Halberda, & Feigenson, 2017). Moreover, the link has been demon-
strated in individuals with poor math ability (e.g., Mazzocco,
Feigenson, & Halberda, 2011; Olsson, Ostergren, & Traff, 2016; Piazza
et al., 2010), typical math ability (Feigenson et al., 2013), as well as
precocious math ability (Wang et al., 2017), suggesting that the influ-
ence of the ANS on math is pervasive not only across a broad age range,
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but also across different levels of education and math proficiency.
However, these findings are not without controversy, and several null
reports have been published contesting the relationship between ANS
and formal math, both in children as well as in adults (reviewed in
Feigenson et al., 2013). The reasons for this inconsistency likely relate
at least in part to psychometric differences across studies and low
concurrent validity among ANS tests (Dietrich, Huber, & Nuerk, 2015;
Gilmore, Attridge, & Inglis, 2011; Smets, Gebuis, Defever, & Reynvoet,
2014). Different tasks purporting to index the ANS often have low
correlations with each other, and therefore, different studies may not
always be measuring the same underlying construct. Nevertheless,
throughout this noise, cumulative meta-analytic evidence still supports
the existence of an overall small, but reliable correlation (r= 0.20 to
0.24) between math and ANS acuity (Chen & Li, 2014; Schneider et al.,
2016), supporting the contention that the ANS is in fact related to
mathematical and numerical knowledge.

The prospect of ANS plasticity is therefore of considerable interest,
as it may implicate downstream effects on higher order skills. Although
this effect is small, and certainly less predictive of later math perfor-
mance than the more commonly studied symbolic processing of num-
bers (de Smedt, Noel, Gilmore, & Ansari, 2013), it still represents a
heretofore largely untapped avenue for intervention. Moreover, inter-
vention can occur at an unprecedentedly early age since the ANS is
behaviorally present even in infancy (Starr, Libertus, & Brannon, 2013).
From there, ANS acuity gradually increases throughout childhood
(Halberda & Feigenson, 2008; Halberda, Ly, Wilmer, Naiman, &
Germine, 2012; Piazza et al., 2010) and even throughout the young
adult years, not peaking until around age 30 (Halberda et al., 2012),
suggesting a high degree of plasticity. Additionally, education, parti-
cularly in quantitative fields, has also been shown to lead to a more
refined ANS (Castronovo & Gobel, 2012; Halberda et al., 2008;
Lindskog, Winman, & Juslin, 2014; Piazza, Pica, Izard, Spelke, &
Dehaene, 2013). Therefore, ANS acuity, though innate, may also be
highly susceptible to experience and environmental input. In fact, tar-
geted interventions involving repeated practice on number sense tasks
have sought to test this plasticity more specifically, demonstrating
improved ANS acuity in typically developing children (Odic, Hock, &
Halberda, 2014), improved acuity and number processing in dyscalculic
children (Wilson, Revkin, Cohen, Cohen, & Dehaene, 2006), rapid
learning effects in response to trial-by-trial feedback in healthy adults
(Dewind & Brannon, 2012; Lindskog, Winman, & Juslin, 2013), and
generalized magnitude discrimination improvements when coupling
ANS exposure with transcranial random noise stimulation (Cappelletti
et al., 2013).

Park and Brannon (2013, 2014) took this one step further and de-
monstrated that training to improve ANS skills via an approximate ar-
ithmetic training (AAT) task can also improve symbolic arithmetic skills
among college students, as measured by addition and subtraction of
Arabic numerals. Given the correlations between the ANS and mathe-
matics performance throughout the school years, up to and including
SAT and GRE scores (Dewind & Brannon, 2012; Libertus et al., 2012),
this finding suggests a potential causal link between the ANS and
mathematics that can be exploited by targeted training that fosters the
bottom-up development of numeracy skills at a core, foundational level.
This finding was later replicated among preschoolers with a standar-
dized test battery of math achievement using a similar training inter-
vention (Park, Bermudez, Roberts, & Brannon, 2016), and Wang, Odic,
Halberda, and Feigenson (2016) also concurrently found that even brief
exposure to an ANS acuity task over a single session can improve formal
math ability among preschoolers if the ANS trials are presented in a
scaffolded manner (i.e., easier trials first). Despite these promising in-
itial results, however, evidence for true plasticity at the level of the ANS
has been criticized and is still inconclusive (Lindskog & Winman, 2016;
Lindskog et al., 2013; Szucs & Myers, 2017), casting much uncertainty
on what exactly mediates the improvements observed in math. One
issue is that AAT, which involves the approximate addition and

subtraction of dot clouds of varying numerosity, may be training ad-
ditional processes beyond the ANS itself. Though Park and Brannon
(2014) ruled out secondary processes such as visual working memory,
covert symbolic arithmetic practice during the AAT, or general placebo
effects, they were also not able to demonstrate any convincing training-
related improvements on a measure of ANS acuity, and it is still an open
question as to whether math improvements after AAT are specifically
related to changes in the ANS per se (e.g., see Szucs & Myers, 2017).

The present study, therefore, has two goals. First, we attempt an
independent replication of the transfer effects of AAT on symbolic ar-
ithmetic proficiency. Second, we seek to systematically explore direct
transfer effects of AAT to ANS-related skills. With respect to the second
goal, we aim to improve on the methodology used by Park & Brannon in
several ways. First, while Park and Brannon (2014) used a single
measure (a nonsymbolic comparison task) to index the ANS, we use a
battery of different tasks, evaluating both nonsymbolic and symbolic
tests of comparison, estimation, and nonverbal counting. Evidence
suggests that the ANS may not represent a unitary construct, and that
different metrics do not correlate well with each other (Gilmore et al.,
2011; Smets et al., 2014). Therefore, a valid assessment of training-
related ANS change would likely require multiple measures. Moreover,
our use of both nonsymbolic as well as symbolic versions of each of our
tasks allows an evaluation of both specific and general transfer to
number sense. If improvements in math are truly a result of specific
improvements in the ANS, then these improvements in nonsymbolic
discrimination must also be generalizable to the symbolic domain as
well. Finally, we seek to maximize the chances of transfer by creating
outcome measures that more closely mirror the relevant characteristics
of the training regimen. For example, one issue with the nonsymbolic
comparison task used in Park and Brannon (2014) to assess near
transfer to the ANS is that it involved the comparison of ratios typically
much smaller than what was trained. Fig. 2 of Park and Brannon (2014)
shows a log difference level of just over 0.5 at the end of six training
sessions, which corresponds to discriminating dot arrays that are se-
parated by approximately a ratio of 1.5 to 1. However, their nonsym-
bolic comparison task tested participants on ratios that were almost all
below 1.25 to 1, a range on which they received very little training.
Therefore, the tasks used in the present study, including our version of
the nonsymbolic comparison task, incorporate magnitude information
designed to contain greater overlap with the trained numerosities, and
our statistical analyses are designed to investigate the degree to which
this matters by systematically evaluating group differences across dif-
ferent magnitude ranges.

Another issue is that Park & Brannon controlled for continuous
perceptual cues such as average dot size and total surface area in their
transfer task, but not in the training task. Though such non-numerical
stimulus control has recently become common practice in the literature
(c.f., Dietrich et al., 2015), and is arguably a more pure way to measure
the abstraction of numerical information, unconfounded by other con-
tinuous perceptual cues, this makes the task much harder for partici-
pants (Agrillo, Piffer, & Bisazza, 2011; Dietrich et al., 2015; Gebuis &
Reynvoet, 2012b), and may not entirely engage the same cognitive
processes that were trained considering that the training task did not
control for such perceptual cues. In order to maximize chances of de-
tecting transfer effects, it is important to increase process overlap with
the trained task (c.f., Jaeggi et al., 2010; Loosli, Buschkuehl, Perrig, &
Jaeggi, 2012; Lustig, Shah, Seidler, & Reuter-Lorenz, 2009). Therefore,
this required making a design choice on our part to either control for
non-numerical cues in our training task, or to keep the training task as
is and remove such controls from the transfer tasks. We opted for the
latter choice in order to keep the training as consistent as possible to
that of Park and Brannon (2013, 2014), reasoning that this approach
would maximize chances of replicating the transfer effects to symbolic
arithmetic proficiency, as any attempt to evaluate the underlying me-
chanisms of training would otherwise be moot.

Moreover, it has been demonstrated that both humans and non-
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