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a b s t r a c t

The relation between 2 forms of mathematical cognition, calculations and word problems, was examined.
Across grades 2–3, performance of 328 children (mean starting age 7.63 [SD = 0.43]) was assessed 3
times. Comparison of a priori latent change score models indicated a dual change model, with consis-
tently positive but slowing growth, described development in each domain better than a constant or pro-
portional change model. The bivariate model including change models for both calculations and word
problems indicated prior calculation performance and change were not predictors of subsequent
word-problem change, and prior word-problem performance and change were not predictors of subse-
quent calculation change. Results were comparable for boys versus girls. The bivariate model, along with
correlations among intercepts and slopes, suggest calculation and word-problem development are
related, but through an external set of overlapping factors. Exploratory supplemental analyses corrobo-
rate findings and provide direction for future study.

� 2017 Published by Elsevier Inc.

1. Introduction

Mathematics comprises a variety of related branches focused on
the study of quantities as expressed in numbers or symbols. In the
primary grades, the major curricular focus is whole numbers, usu-
ally conceptualized as understanding number, performing calcula-
tions (CALC), and solving word problems (WP); in the
intermediate-middle grades, the focus shifts to rational numbers
and algebraic thinking, and the high school curriculum includes
algebra, geometry, trigonometry, and calculus (Common Core
State Standards Initiative, 2010; Geary et al., 2008; National
Mathematics Advisory Panel, 2008). Yet, little is understood about
how various aspects of mathematical cognition relate to: which
aspects are shared or distinct and whether development in one
domain influences development in others. Such understanding
would provide insight into the nature of mathematics competence
and guidance about how to optimize the design of curriculum and
instruction.

The focus of the present study was connections between devel-
opment of whole-number CALC andWP skill across grades 2–3. We
focused on these grades because substantial progress occurs on
multi-digit whole-number CALC and on WPs in this developmental

period (Fuchs, Geary, Fuchs, Compton, & Hamlett, 2014; Geary,
2011). Both forms of early mathematical cognition are essential.
Competence with whole-number CALC is foundational for success
with every subsequent form of mathematics. WP solving, the best
school-age predictor of adult employment and wages (Every Child
a Chance Trust, 2009), represents a major emphasis within almost
every strand of the mathematics curriculum throughout school.
Yet, connections between these two essential forms of mathemat-
ical cognition are not well understood.

With typical development of CALC skill, children enter school
with rudimentary understanding of number, insights into basic
addition-subtraction concepts, and skill in counting objects to
solve single-digit problems (Geary, 1994). In kindergarten and first
grade, most children achieve a reliable, full set of associations
among phonological, visual, and semantic representations of
numerals, and addition-subtraction concepts and skilled use of
counting for solving arithmetic problems improve (e.g., Groen &
Resnick, 1977). Across grades 1–3, use of efficient counting strate-
gies produces repeated associations of simple arithmetic problems
with answers to secure representations in long-term memory
(Fuson & Kwon, 1992; Siegler & Robinson, 1982; Siegler &
Shrager, 1984). This permits direct retrieval, freeing attentional
resources and providing the foundation for more complex CALC
(Fuchs et al., 2013; LeFevre & Morris, 1999). Such multi-digit CALC
involve knowledge of procedural steps that differ in sequence and
complexity by problem type and rely on deliberate decision
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making, constrained by understanding of the numeration system
and the ability to monitor strings of procedural actions (Fuchs
et al., 2014).

Less is known about how children develop facility with WPs.
Moreover, prior work has not investigated how CALC and WP
development is connected. What’s known is that concurrent per-
formance between domains is moderate to substantial (rs range
from 0.35 to 0.71; e.g., Fuchs et al., 2008, 2010a, 2010b;
Seethaler, Fuchs, Fuchs, & Compton, 2012). There are three expla-
nations for this relation.

One possibility is that contextualizing CALC via stories supports
understanding about CALC, and WP skill thus contributes to devel-
oping CALC skill. Some studies provide support for the hypothesis
that contextualizing mathematics instruction with meaningful sit-
uations improves learning (Bottge, 1999; Cordova & Lepper, 1996;
Maccini, Mulcahy, & Wilson, 2007), and this perspective is
reflected in instruction designed to strengthen CALC in the primary
grades (Bryant et al., 2011; Fuchs et al., 2013; Fuchs, Powell, et al.,
2014). Yet, the tenability of assumptions underlying this hypothe-
sis have been questioned (Anderson, Reder, & Simon, 1996), and
we identified no studies testing whether contextualizing CALC
problems with stories facilitates CALC performance or whether
improved WP skill is a leading indicator of subsequent CALC
performance.

A second possibility for the moderate to strong relation
between CALC and WP skill is that CALC skill is foundational for
WP solving. SolvingWPs relies on CALCs. However, whereas a CALC
problem is set up for solution, a WP requires students to process a
narrative to build a problem model and then construct number
sentence(s) for calculating the unknown quantity. Levine, Jordan,
and Huttenlocher (1992) provided some evidence that CALC skill
precedes WP solving. Testers presented a set of objects, then
moved the objects into a box and transformed this hidden set by
visibly adding or removing objects. Children then constructed an
array showing the number in the hidden set. Despite success with
this CALC task at age 4, most children could not solve analogous
WPs problems until age 5. This suggests that facility with CALC
precedes WP solving and that CALC are foundational to and are a
leading indicator of WP solving. This is consistent with longitudi-
nal correlational work, where initial CALC skill predicts WP out-
comes (Fuchs et al., 2006; Swanson & Beebe-Frankenberger, 2004).

It is nevertheless also possible that Levine et al. (1992) at age 4
reflect child-level variables necessary to support successful WP
solving, not adequately developed until age 5. One likely candidate,
which emerges in the literature as active in WP solving, is language
comprehension (Fuchs et al., 2008, 2010a, 2010b). Kintsch and
Greeno (l985) described WP solving as demanding of language
comprehension processes, and Cummins, Kintsch, Reusser, and
Weimer (1988) provided corroborating data when they computa-

tionally modeled incorrect WP solving with incorrect math pro-
cesses versus language comprehension processing errors. Results
indicated that correct problem representation depended more on
language comprehension; moreover, changing wording in minor
ways dramatically affected accuracy. Some research identifies lan-
guage comprehension as uniquely predictive of WP (not of CALC),
while other external child-level factors, such as reasoning and
working memory, are common across domains (Fuchs et al.,
2010a, 2010b; Swanson, 2006). Common sources of variance in
explaining individual differences across CALC and WP develop-
ment speak to the third explanation for the moderate to strong
relation between CALC and WP skill: CALC and WP development
are related through an external set of overlapping factors.

The purpose of the present study was to deepen insight into the
tenability of these explanations by directly investigating whether
development in one domain influences the other. Based on
Levine et al. (1992), along with studies indicating CALC skill pre-
dicts WP outcomes, our hypothesis was that CALC skill is founda-
tional to WP solving (explanation #2). This hypothesis was,
however, tentative because effects of WP solving on CALC develop-
ment (explanation #1) have not been examined and because the
literature reveals cognitive processes representing common exter-
nal influences that may explain concurrent relations (explanation
#3).

To consider these explanations, we assessed children’s perfor-
mance in both domains in fall and spring of second grade and
spring of third grade. Relying on a priori latent change score models
(McArdle, 2009), we first determined which of three models (con-
stant change, proportional change, dual change) best describes
development in each domain; we refer to these models as univari-
ate models because only one outcome is considered at a time.

The constant change model, with a constant linear change term
(slope), describes change as stable over time. In our specific case,
this would mean that (on average) students grow at a steady rate
over the course of grades 2 and 3 in terms of CALC andWP and that
incremental change (during the next 6-month period as deter-
mined by our testing waves) is not dependent upon previous levels
of performance.

By contrast, the proportional change model posits that change
occurs incrementally, with change in one 6-month period propor-
tional to performance at the preceding time. Substantively, this
would mean that (on average) students’ change in CALC and WP
is related to their previous level of CALC andWP, respectively, with
no constant or stable growth over the span of grades 2–3.

The dual change model describes development as a function of
linear change and incremental change (see Table 1 for parameter/
estimate interpretations). This would mean that change in CALC
and WP has two influences, one that is constant or stable across
the span of grades 2–3 and one that is dependent on (or

Table 1
Summary of parameter and estimate interpretations.

Parameter/estimate Interpretation

r2
Y

Residual variance of time-specific Y scores
SY Residual of time-specific Y scores
Y Observed indicators of latent Y performance
L1–L4 Latent true scores
r2
I , intercept variance Variability among students in predicted fall of grade 2 performance

I, intercept mean Predicted level of performance at the fall of grade 2
b Autoregressive/proportional change path predicting latent change as a function of the previous level of

performance (above and beyond stable change)
D1–D3, latent change scores Latent change between testing waves influenced by a constant/stable component and the previous latent score
rI;S , intercept and slope covariance Relation between fall performance and rate of growth
r2
S , slope variance Variability among students in rates of growth across grades 2 and 3

S, slope mean Stable, constant change over the course of the study (above and beyond the proportional change); rate of growth
a Loading for the latent slope factor, set to 1 for model identification
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