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In this paper, a novel scheme is presented for forming the matrix equations of multilevel adaptive cross approxi- 

mation (MLACA) algorithm. The main idea of the proposed technique is to use the directional grouping scheme 

to subdivide the far-field domain of MLACA algorithm. By using the grouping scheme, the far-field interaction 

domain can be divided into many cone structures. The matrix between the observation group and far-field group 

in the cone structure is low-rank, which meets the directional far-field requirement. At the same time, the near- 

field interaction matrices are formed by the SVD(T) method to further reduce the total memory requirements. 

With the given techniques, the memory requirement of the novel grouping scheme for the far-field is much less 

than half of traditional MLACA algorithm. Meanwhile, the memory requirement of the SVD(T) method for the 

near-field is only about one-third of direct filling. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

APPLICATION of the integral equation methods for solution of lin- 

ear electromagnetic problems has many advantages. Only the surfaces 

of considered domains need to be discretized, open boundary problems 

pose no additional difficulties, and problems including motion can be 

treated elegantly. However, application of the integral equation meth- 

ods leads to dense matrices. The memory requirements and computa- 

tional costs are of O( N 

2 ), where N is the number of unknowns. 

In recent years, there are many fast algorithms [1–2] have been pro- 

posed to reduce the pressure of memory requirements and computa- 

tional costs of method of moments (MoM) [3] . The matrix compression 

technique is a kind of commonly used numerical method, which is a pure 

mathematical method. Therefore, it does not depend on the expansion of 

Green’s function. It can easily be applied to analyze the complex targets 

electromagnetic problems. In [4–5] , a "butterfly" decomposition method 

called multilevel matrix decomposition algorithm (MLMDA) is proposed 

to analyze the scattering from electrically large objects, which utilizes 

the idea of equivalent sources to gain an efficient matrix compression 

technique. Multilevel UV method is proposed in [6–7] , which makes the 

rank table for the problems and then applies the rank table to decom- 

press the impedance matrix. References [8] introduce an efficient matrix 
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compression technique named H-matrix, whose numerical complexity 

can be reach to O ( N log N ). In [15] , an efficient form of ACA algorithm 

[14,11,12] is introduced, which utilizes the QR factorization and sin- 

gular value decomposition to further compress the sub-matrices of ACA 

algorithm. The multilevel adaptive cross approximation (MLACA) is also 

an efficient matrix compression technique for analyzing the boundary 

value problems. The matrices of MLACA algorithm is decomposed by 

extracting the rank of rows and columns. Two improved forms of the 

MLACA [9,10] are introduced in [13] and [16] , respectively, which are 

much more efficient than traditional MLACA algorithm [9,10] for large 

targets. A fast direct method based on ACA algorithm is proposed in 

[17] for analyzing the electrically large integral equations for problem 

sizes to 1 M unknowns. 

Although the matrix compression method has so many advantages, 

it consumes a lot of time in the matrix filling process. In this paper, the 

matrix filling process of MLACA algorithm is analyzed and a novel tree 

structure called directional grouping scheme [18–21] is applied to re- 

duce the computational time of the matrix filling process. It utilizes the 

directional grouping scheme to divide the far-field interaction area into 

a lot of cones. The interaction matrix formed by the observation box and 

far-field cone is low rank, which meets the directional far-field require- 

ment [19] . The interaction matrices can be filled by matrix compression 
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algorithm efficiently. By using this technique, an efficient matrix filling 

process is obtained. The numerical results show that the proposed tech- 

nique can reduce the computational time and memory of matrix fill- 

ing process of MLACA algorithm significantly, with excellent accuracy. 

Meanwhile, the near-field interaction matrices can also be represented 

by low rank compression technique, and its rank is several times larger 

than that of the far-field matrix, but it is much smaller than the dimen- 

sions of the near-field interaction matrix. In this paper, the near-field 

interaction matrices are compressed by SVD(T) method [22] to further 

reduce the total memory requirements. 

2. Multilevel directional adaptive cross approximation 

To obtain the matrix representation of traditional MLACA algorithm, 

an efficient approach is proposed to partition the problem domain into 

smaller boxes. The partition scheme is same as that of multilevel fast 

multipole algorithm (MLFMA) [1] . To construct a cluster tree, we start 

from the root cluster which is the full index set. We then find a dis- 

joint partition of the index set and use this partition to create children 

clusters. We continue the partition process until the lowest-level square 

boxes, whose electrical size is less than 1/10 wavelength. The box in 

the high level is termed “parent ” and the box that is contained in the 

“parent ” box is termed “children. ” The possible far-field action boxes 

for an observation box at the “children ” level is limited in the near-field 

of its “parent ” level, which is shown in Fig. 1 . 

According to the Fig. 1 , there may be 27 far-field action groups for 

the “A ” box in the two dimensional case. At the same time, there are 189 

possible far-field boxes in the three dimensional case. The interaction 

matrices between the observation box and the far-field action boxes are 

filled by ACA algorithm. The number of the interaction matrices is very 

large, so that the matrix filling time of traditional MLACA algorithm is 

relatively long. 

2.1. The single level of directional adaptive cross approximation 

In order to improve the matrix filling process, a novel tree struc- 

ture called directional grouping scheme [18–19] is used in this paper. 

It divides the far-field interaction area into many cones. The problem 

domain is first encapsulated in a smallest square box, and then a hierar- 

chical subdivision of the square box is constructed until the box’s size of 

the lowest-level is less than 1/10 wavelength, similar to the traditional 

tree structure of MLFMA. Then, the far-field interaction area of each 

level is partitioned into a group of cone regions. In Fig. 2 (a), the form of 

directional grouping scheme for an observation box in the two dimen- 

sional case is given. Meanwhile, the three dimensional case is given in 

Fig. 2 (b). 

Here, w denotes the box’s size at the level. l denotes the number 

of the cone regions, and the 1/ w denotes the angle of cone. The cone 

regions at each level are in the same size ( O (1/ w )), which are used to 

divided the far-field area of the observation box. The far-field action 

parts of the observation box are in the distance of w 

2 away. In Fig. 2 , 

Fig. 1. The far-field action boxes for an observation box in the two dimensional case. 

Fig. 2. (a) The form of directional grouping scheme in the two dimensional case. (b) The 

form of directional grouping scheme in the three dimensional case. 

Fig. 3. The form of multilevel directional grouping scheme. 

the “Y ” denotes the observation box, and the “X ” denotes the far-field 

action boxes of the observation box. The interaction matrix formed by 

the observation box and far-field cone is low rank, which meets the 

directional far-field requirement [19] . The interaction matrices can be 

filled by matrix compression algorithm efficiently. The ACA is utilized to 

fill interaction matrices, which constructs the interaction matrix through 

the following product form, 

[ 𝑍] 𝑚 ×𝑛 = [ 𝑈 ] 𝑚 ×𝑟 [ 𝑉 ] 𝑟 ×𝑛 (1) 

where [ Z ] m × n denotes the interaction matrix between the observation 

box and far-field cone, r denotes the rank of the interaction matrix ( r 

≪ min ( m, n )). It needs about O ( Nr ) (where N denotes the number of 

unknowns) to store the sub-matrices formed by the single level of direc- 

tional adaptive cross approximation (DACA) algorithm, which is much 

less than that of the MoM. 

2.2. The multilevel of directional adaptive cross approximation 

Fig. 3 shows the multilevel directional grouping scheme in two di- 

mensional case. It can be seen from the figure, the grey domain is the 

possible far-field interaction area of the box A’s children, which is the 

near-field of the box A. The far-field interaction area of the box A is in 

the distance of 4 w 

2 away. And so on, the far-field interaction area of the 
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