
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Accurately modeling the on-chip and off-chip GPU memory
subsystem
Francisco Candel ∗, Salvador Petit, Julio Sahuquillo, José Duato
Department of Computer Engineering, Universitat Politècnica de València, 46012 Valencia, Spain

h i g h l i g h t s

• This paper focuses on accurately modeling the entire GPU memory subsystem, both on-chip and off-chip.
• We accurately modeled critical memory components in the state-of-the-art Multi2Sim heterogeneous CPU–GPU processor simulator.
• Experimental results show that not accurately modeling these components can raise the evaluated execution time up to 3 times.

a r t i c l e i n f o

Article history:
Received 3 March 2016
Received in revised form
20 January 2017
Accepted 7 February 2017
Available online xxxx

Keywords:
Applied modeling and simulation
On-chip memory subsystem
Main memory controller
GDDR
Cache coherence protocol

a b s t r a c t

Research on GPU architecture is becoming pervasive in both the academia and the industry because these
architectures offer much more performance per watt than typical CPU architectures. This is the main
reason why massive deployment of GPUmultiprocessors is considered one of the most feasible solutions
to attain exascale computing capabilities.

The memory hierarchy of the GPU is a critical research topic, since its design goals widely differ from
those of conventional CPU memory hierarchies. Researchers typically use detailed microarchitectural
simulators to explore novel designs to better support GPGPU computing as well as to improve the
performance of GPU and CPU–GPU systems. In this context, the memory hierarchy is a critical and
continuously evolving subsystem.

Unfortunately, the fast evolution of current memory subsystems deteriorates the accuracy of existing
state-of-the-art simulators. This paper focuses on accurately modeling the entire (both on-chip and off-
chip) GPU memory subsystem. For this purpose, we identify four main memory related components that
impact on the overall performance accuracy. Three of them belong to the on-chip memory hierarchy:
(i) memory request coalescing mechanisms, (ii) miss status holding registers, and (iii) cache coherence
protocol; while the fourth component refers to the memory controller and GDDR memory working
activity.

To evaluate and quantify our claims,we accuratelymodeled the aforementionedmemory components
in an extended version of the state-of-the-art Multi2Sim heterogeneous CPU–GPU processor simulator.
Experimental results show important deviations, which can vary the final system performance provided
by the simulation framework up to a factor of three. The proposed GPU model has been compared and
validated against the original framework and the results from a real AMD Southern-Islands 7870HD GPU.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the recent years there has been an steady increase in the use
of GPUs (Graphics Processing Units) for general purpose comput-
ing. Themain reason is that general purpose computing in GPUs or
simply GPGPU computing is much more energy-efficient [1] than

∗ Corresponding author.
E-mail address: fracanma@inf.upv.es (F. Candel).

conventional computing. In other words, for a given power bud-
get, GPGPUs provide higher performance than their CPUs counter-
parts, especially when running massively parallel workloads. Be-
cause of this fact, most of the top 10 supercomputers in the top 500
list [2] rely on GPUs. For instance, the Titan supercomputer, ranged
in second place of the list in November 2014, was built with Nvidia
K20x devices. However, GPU programmability [3] is still harder
than that of conventional computing. To deal with this shortcom-
ing, computer architects are trying to adapt different components
and mechanisms (e.g. caches and prefetching) that have success-
fully worked on CPUs to ease programmability.

http://dx.doi.org/10.1016/j.future.2017.02.012
0167-739X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2017.02.012
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:fracanma@inf.upv.es
http://dx.doi.org/10.1016/j.future.2017.02.012

2 F. Candel et al. / Future Generation Computer Systems () –

The GPU architecture has been traditionally optimized to run
graphic applications workloads, composed of thousands of logical
threads, and that exhibit a massive parallelism. For this purpose,
the GPU cores present a high computational power which come
from including hundreds of processing elements, all of them
working together.

In order to feed such a high number of computational elements,
the GPU core must be coupled with an efficient memory subsys-
tem. Due to this reason, GPU memory subsystems are designed to
tolerate a high number of concurrent accesses.

The importance of easing the programmability of GPUs for
GPGPU computing as well as the irruption in the market of het-
erogeneous computing processors [4] that combine CPUs and GPUs
on the same die, open a new design space for memory hierarchy
designs, which is a hot topic in computer architecture research.
To implement and evaluate their approaches, academic and indus-
try researchers need from complex and detailed simulation frame-
works. These software packages are abstractions that model the
functionality of real hardware and focus on those hardware com-
ponents that have a significant impact on the final system perfor-
mance. However, because of the fast speed at which current sys-
tems evolve, state-of-the-art simulators often miss modeling im-
portant components and, consequently, simulation results are not
as accurate as they should.

This paper focuses on the memory subsystem, both on-chip
and off-chip, of contemporary GPUs. We find that four main
important components, which present a significant contribution to
the systemperformance, are not preciselymodeled in state-of-the-
art GPU simulatorswith respect to a real device. In particular, three
of them correspond to the on-chip memory hierarchy: (i) memory
request coalescing mechanisms, (ii) miss status holding registers,
and (iii) the cache coherence protocol;while the fourth component
refers to the memory controller and the off-chip GDDR memory.

To quantify the impact on performance of these components,
we enhance themodeling of theGPUmemory subsystem in a state-
of-the-art GPU simulator, we quantify the impact of each compo-
nent on the system performance, and we validate all the compo-
nents working together by comparing the results of the proposal
to the execution time on a AMD Southern-Islands 7870HD GPU.
For this purpose,we used theMulti2Sim simulation framework [5],
widely used in both the academia and the industry. Experimental
results show that each of the studied components, if not accurately
modeled, can result in important (e.g. in a factor of 2× or 3×) per-
formance deviations in the simulated results.

The remainder of this work is organized as follows. Section 2
presents a relevant subset of current GPU simulators. Section 3
describes the Southern Islands architecture and its programming
model. In Section 4, the proposed Multi2Sim extensions are de-
scribed in detail. Section 5 presents the experimental results. Sec-
tion 6 provides the accuracy improvements achieved by the pro-
posed extensions. Finally, in Section 7 some concluding remarks
are drawn.

2. Related work

GPU research simulators are relatively young and still maturat-
ing. In fact, the number of available GPU simulation frameworks
is nowadays much lower than that of CPU simulators. The main
reasons of this lack of tools is that GPU manufacturers provide lit-
tle information about the architecture of their processors as well
as the fact that the architecture of modern GPUs has been and is
quickly evolving, hampering the development of detailed archi-
tectural simulators which require an established and well-known
model. In spite of this fact, due to the growing use of GPUs, some
GPU simulation frameworks have become recently available. Be-
low, we describe a representative set of them.

GPGPU-Sim [6,7] is currently one of the most referenced GPU
simulators. It is a detailed cycle by cycle simulator that supports
CUDA version 3.1. It models a GPUmicroarchitecture similar to the
Nvidia GeForce 8x, 9x, and Fermi series. GPGPU-Sim also simulates
the interconnection network between GPU cores and memory
modules.

Recently, the Gem5 [8] computer system simulator plat-
form was combined with GPGPU-Sim to model a heterogenous
CPU–GPU system. Moreover, GPGPU-Sim version 3.2.0 integrates
GPUWattch [9], an energy model based on McPAT [10]; a power,
area, and timing modeling framework. However, due to its depen-
dence on Nvidia drivers, which only support OpenCL 1.1, GPGPU-
Sim does not provide support for the execution of GPGPU bench-
mark suites like that provided by AMD [11] with modern OpenCL
code.

Barra [12] is a parallel GPU functional simulator. It is based in
the UNISIM framework [13] and it implements both a CUDA driver
emulator and an Nvidia Tesla GPU simulator. In this way, Barra
can execute directly unmodified CUDA programs and generate
statistics at the instruction level. The major shortcoming of this
simulator is that it does not model the GPU microarchitecture,
thus it cannot be used to evaluate possible enhancements in the
memory subsystem. In addition, this framework only supports a
rather old CUDA version 2.2.

Multi2Sim [14,5] is an accurate cycle by cycle execution driven
simulation framework for CPU–GPU heterogeneous computing.
Release and development versions of Multi2Sim are available.
It provides a fully configurable memory subsystem with several
cache levels and interconnection networks.Multi2Sim implements
several GPU architectures from both AMD (Evergreen, Southern
Islands) and Nvidia (Fermi) as well as CPU architectures like x86,
MIPS-32 and ARM. The Multi2Sim developer team is currently
modeling the HSA heterogeneous architecture [15], where both
CPU and GPU share the same memory subsystem. Finally,
Multi2Sim includes its own implementation of OpenCL and CUDA
libraries. In this way, it can provide dynamic information about
CPU–GPU interaction by instrumenting OpenCL and CUDA calls.

In summary, we chose Multi2Sim because (i) it simulates a
heterogeneous CPU–GPU cycle by cycle, (ii) it implements the
recent AMDGPU core architectures called GCN [16], (iii) it includes
its own OpenCL and CUDA libraries, and (iv) support for the HSA
architecture is being developed.

3. Southern Islands GPU programming model and architecture

This section provides some background on how contemporary
GPUs work. To this end, we focus on the state-of-the-art Southern
Islands GPU from AMD introduced in 2012 which, to the best of
our knowledge, is the most recent GPU architecture implemented
on a detailed simulator framework. To understand this system, two
main axis must be considered: (i) its programming model, and (ii)
its architecture, which consists of multiple cores sharing the same
memory hierarchy. Below, both axis are discussed.

3.1. The OpenCL programming model

Two main programming frameworks, CUDA [17] from Nvidia
and OpenCL [18] from the Khronos group, are currently being
used for developing programs targeting GPGPUs and other kinds
of computing devices. OpenCL is, ‘‘de facto’’, an industry standard
programmingmodel [19]. There are OpenCL implementations that
work on devices from different brands such as Intel, AMD, ARM, or
even Nvidia, while CUDA is only supported in GPUs manufactured
by Nvidia.

The OpenCL specification [20] defines a platform model and an
execution model. The platform model is an abstraction of the real

https://isiarticles.com/article/156785

