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We introduce a new family of graphical models that consists of graphs with possibly 
directed, undirected and bidirected edges but without directed cycles. We show that these 
models are suitable for representing causal models with additive error terms. We provide 
a set of sufficient graphical criteria for the identification of arbitrary causal effects when 
the new models contain directed and undirected edges but no bidirected edge. We also 
provide a necessary and sufficient graphical criterion for the identification of the causal 
effect of a single variable on the rest of the variables. Moreover, we develop an exact 
algorithm for learning the new models from observational and interventional data via 
answer set programming. Finally, we introduce gated models for causal effect identification, 
a new family of graphical models that exploits context specific independences to identify 
additional causal effects.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Undirected graphs (UGs), bidirected graphs (BGs), and directed and acyclic graphs (DAGs) have extensively been studied 
as representations of independence models. DAGs have also been studied as representation of causal models, because they 
can model asymmetric relationships between random variables. DAGs and UGs (respectively BGs) have been extended into 
chain graphs (CGs), which are graphs with possibly directed and undirected (respectively bidirected) edges but without 
semidirected cycles. Therefore, CGs can model both symmetric and asymmetric relationships between random variables. 
CGs with possibly directed and undirected edges may represent a different independence model depending on whether 
the Lauritzen–Wermuth–Frydenberg (LWF) or the Andersson–Madigan–Perlman (AMP) interpretation is considered [16,1]. 
CGs with possibly directed and bidirected edges have a unique interpretation, the so-called multivariate regression (MVR) 
interpretation [8]. MVR CGs have been extended by (i) relaxing the semidirected acyclity constraint so that only directed 
cycles are forbidden, and (ii) allowing up to two edges between any pair of nodes. The resulting models are called original 
acyclic directed mixed graphs (oADMGs) [25]. AMP CGs have also been extended similarly [19]. The resulting models are 
called alternative acyclic directed mixed graphs (aADMGs).

In this paper, we combine oADMGs and aADMGs into what we simply call ADMGs. These are graphs with possibly 
directed, undirected and bidirected edges but without directed cycles. Moreover, there can be up to three edges between 
any pair of nodes. This work complements the existing works for the following reasons. To our knowledge, the only mixed 

✩ This paper is part of the Virtual special issue on the Eighth International Conference on Probabilistic Graphical Models, Edited by Giorgio Corani, 
Alessandro Antonucci, Cassio De Campos.
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Fig. 1. Example where p(B| Â) is identifiable from the aADMG but not from the oADMG.

Fig. 2. Example where p(B| Â) is identifiable from the oADMG but not from the aADMG.

graphical models in the literature that subsume AMP CGs are the already mentioned aADMGs and the so-called marginal 
AMP CGs [18]. However, marginal AMP CGs are simple graphs with possibly directed, undirected and bidirected edges but 
without semidirected cycles and, moreover, some constellations of edges are forbidden. Therefore, marginal AMP CGs do not 
subsume ADMGs. Likewise, no other family of mixed graphical models that we know of (e.g. oADMGs, summary graphs [8], 
ancestral graphs [26], MC graphs [15] or loopless mixed graphs [27]) subsume AMP CGs and hence ADMGs. To see it, we 
refer the reader to the works by Richardson and Spirtes [26, p. 1025] and Sadeghi and Lauritzen [27, Section 4.1].

In addition to represent independence models, some of the families of graphical models mentioned above have been 
used for causal effect identification, i.e. to determine if the causal effect of an intervention is computable from observed 
quantities. For instance, Pearl’s approach to causal effect identification makes use of oADMGs to represent causal models 
over the observed variables [22]. The directed edges represent potential causal relationships, whereas the bidirected edges 
represent potential confounding, i.e. a latent common cause. A key feature of Pearl’s approach is that no assumption is made 
about the functional form of the causal relationships. That is, each variable A is an unconstrained function of its observed 
causes Pa(A) and its unobserved causes U A , i.e. A = f (Pa(A), U A). In this paper, we study causal effect identification under 
the assumption that A = f (Pa(A)) + U A , i.e. under the assumption of additive errors. This is a rather common assumption 
in causal discovery, e.g. see [7,14,23]. Specifically, we show that ADMGs are suitable for representing such causal models: An 
undirected edge between two nodes represents potential dependence between their error terms given the rest of the error 
terms, as opposed to a bidirected edge that represents potential marginal dependence due to confounding. The reason for 
studying ADMGs for causal effect identification is that we may identify more causal effects from them than from oADMGs, 
since the former are tailored to the additive error assumption. We illustrate this question with the example in Fig. 1, which 
is borrowed from Peña [19]. The ADMGs in the figure represent the causal model over the observed variables represented 
by the DAG. The oADMG is derived from the DAG by keeping the directed edges between observed variables, and adding 
a bidirected edge between two observed variables if and only if they have a confounder [35, Section 5]. The aADMG is 
derived from the DAG by keeping the directed edges between observed variables, and adding an undirected edge between 
two observed variables if and only if their unobserved causes are not separated in the DAG given the unobserved causes of 
the rest of the observed variables. Clearly, the effect on B of an intervention on A, i.e. p(B| Â), is not identifiable from the 
oADMG [22, p. 94], but it is identifiable from the aADMG and is given by

p(B| Â) =
∑

c

p(B|A, c)p(c).

To see it, recall that we assume additive noise. This implies that C determines UC , which blocks the path A ← U A →
UC → U B → B in the DAG. This can also be seen directly in the aADMG, as C blocks the path A − C − B . Therefore, we 
can identify the desired causal effect by just adjusting for C , since C blocks all non-causal paths from A to B . It is worth 
mentioning that there are also cases where the oADMG allows for causal effect identification whereas the aADMG does 
not. One such case is shown in Fig. 2, where we have just replaced the edge UC → U B in Fig. 1 with the edge UC ← U B . 
Specifically, p(B| Â) is not identifiable from the aADMG by Theorem 12 in this article, whereas it is identifiable from the 
oADMG, i.e. p(B| Â) = p(B|A). Therefore, oADMGs and aADMGs are more complementary than competing causal models. To 
further illustrate our point, we make the example in Fig. 1 more concrete by turning it into the following invented gambling 
game:

U A ∼ N(0,σ )

UC ∼ N(U A,σ )

U B ∼ N(UC ,σ )
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