RTICI E IN I

[International Journal of Approximate Reasoning](http://dx.doi.org/10.1016/j.ijar.2017.06.015) ••• (••••) •••-•••

1 Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/) 1

International Journal of Approximate Reasoning $4 \rightarrow 2$ 111 111 111 111 111 111 111 11

www.elsevier.com/locate/ijar 8 8

9 9 10

18 18 19 19

11 Causal offect identification in acyclic directed mixed graphs 11 $\frac{11}{12}$ Causal effect identification in acyclic directed mixed graphs $\frac{11}{12}$ $\frac{1}{13}$ and gated models $\frac{1}{13}$ 14

15 15 Jose M. Peña, Marcus Bendtsen 16 $\overline{}$ 16

17 17 *Department of Computer and Information Science, Linköping University, Sweden*

20 ARTICLE INFO ABSTRACT 20

21 21 *Article history:* Received 1 December 2016 Received in revised form 28 May 2017 Accepted 26 June 2017 Available online xxxx

Keywords: Acyclic directed mixed graphs Causal models Answer set programming

 22 Article history:
22 Article history: 22 article introduce a new family of graphical models that consists of graphs with possibly ecewed 1 December 2010
23 **December 2010** directed, undirected and bidirected edges but without directed cycles. We show that these 23 24 Accepted 26 June 2017
a set of sufficient graphical criteria for the identification of arbitrary causal effects when 25 Available online xxxx
the new models contain directed and undirected edges but no bidirected edge. We also $\frac{26}{\text{Kewounds}}$ 26 $\frac{26}{\text{Kewords}}$ 26 $\frac{26}{\text{Kewords}}$ 26 $\frac{26}{\text{Kewords}}$ 26 $\frac{26}{\text{Kewords}}$ 26 $\frac{26}{\text{Kewords}}$ 27 expressed mixed graphs effect of a single variable on the rest of the variables. Moreover, we develop an exact 27 28 Causal models 28 Causal models are not algorithm for learning the new models from observational and interventional data via 28 29 29 answer set programming. Finally, we introduce gated models for causal effect identification, 30 30 a new family of graphical models that exploits context specific independences to identify 31 31 additional causal effects. models are suitable for representing causal models with additive error terms. We provide

32 32 © 2017 Elsevier Inc. All rights reserved.

1. Introduction

38 38 39 Undirected graphs (UGs), bidirected graphs (BGs), and directed and acyclic graphs (DAGs) have extensively been studied 40 as representations of independence models. DAGs have also been studied as representation of causal models, because they 41 can model asymmetric relationships between random variables. DAGs and UGs (respectively BGs) have been extended into 42 chain graphs (CGs), which are graphs with possibly directed and undirected (respectively bidirected) edges but without 43 semidirected cycles. Therefore, CGs can model both symmetric and asymmetric relationships between random variables. 44 CGs with possibly directed and undirected edges may represent a different independence model depending on whether 45 the Lauritzen–Wermuth–Frydenberg (LWF) or the Andersson–Madigan–Perlman (AMP) interpretation is considered [\[16,1\].](#page--1-0) 46 CGs with possibly directed and bidirected edges have a unique interpretation, the so-called multivariate regression (MVR) ⁴⁷ interpretation [\[8\].](#page--1-0) MVR CGs have been extended by (i) relaxing the semidirected acyclity constraint so that only directed ⁴⁷ ⁴⁸ cycles are forbidden, and (ii) allowing up to two edges between any pair of nodes. The resulting models are called original ⁴⁸ 49 acyclic directed mixed graphs (oADMGs) [\[25\].](#page--1-0) AMP CGs have also been extended similarly [\[19\].](#page--1-0) The resulting models are 50 called alternative acyclic directed mixed graphs (aADMGs).

⁵¹ In this paper, we combine oADMGs and aADMGs into what we simply call ADMGs. These are graphs with possibly 5¹ 52 directed, undirected and bidirected edges but without directed cycles. Moreover, there can be up to three edges between 52 ⁵³ any pair of nodes. This work complements the existing works for the following reasons. To our knowledge, the only mixed ⁵³

 56 $^{\circ}$ This paper is part of the Virtual special issue on the Eighth International Conference on Probabilistic Graphical Models, Edited by Giorgio Corani, 56 57 57 Alessandro Antonucci, Cassio De Campos.

2 *J.M. Peña, M. Bendtsen / International Journal of Approximate Reasoning* ••• *(*••••*)* •••*–*•••

 \mathbf{g} **Fig. 1.** Example where $p(B|A)$ is identifiable from the aADMG but not from the oADMG.

 16 **Fig. 2.** Example where $p(B|A)$ is identifiable from the oADMG but not from the aADMG.

 19 graphical models in the literature that subsume AMP CGs are the already mentioned aADMGs and the so-called marginal 20 AMP CGs [\[18\].](#page--1-0) However, marginal AMP CGs are simple graphs with possibly directed, undirected and bidirected edges but 21 without semidirected cycles and, moreover, some constellations of edges are forbidden. Therefore, marginal AMP CGs do not ₂₂ subsume ADMGs. Likewise, no other family of mixed graphical models that we know of (e.g. oADMGs, summary graphs [\[8\],](#page--1-0) z 23 ancestral graphs [\[26\],](#page--1-0) MC graphs [\[15\]](#page--1-0) or loopless mixed graphs [\[27\]\)](#page--1-0) subsume AMP CGs and hence ADMGs. To see it, we 24 refer the reader to the works by Richardson and Spirtes [26, [p. 1025\]](#page--1-0) and Sadeghi and Lauritzen [27, [Section](#page--1-0) 4.1].

₂₅ In addition to represent independence models, some of the families of graphical models mentioned above have been 25 $_{26}$ used for causal effect identification, i.e. to determine if the causal effect of an intervention is computable from observed $_{26}$ ₂₇ quantities. For instance, Pearl's approach to causal effect identification makes use of oADMGs to represent causal models zz 28 28 over the observed variables [\[22\].](#page--1-0) The directed edges represent potential causal relationships, whereas the bidirected edges 29 29 represent potential confounding, i.e. a latent common cause. A key feature of Pearl's approach is that no assumption is made 30 30 about the functional form of the causal relationships. That is, each variable *A* is an unconstrained function of its observed 31 causes Pa(A) and its unobserved causes U_A , i.e. $A = f(Pa(A), U_A)$. In this paper, we study causal effect identification under 31 32 the assumption that $A = f(Pa(A)) + U_A$, i.e. under the assumption of additive errors. This is a rather common assumption 32 33 33 in causal discovery, e.g. see [\[7,14,23\].](#page--1-0) Specifically, we show that ADMGs are suitable for representing such causal models: An 34 34 undirected edge between two nodes represents potential dependence between their error terms given the rest of the error 35 35 terms, as opposed to a bidirected edge that represents potential marginal dependence due to confounding. The reason for 36 36 studying ADMGs for causal effect identification is that we may identify more causal effects from them than from oADMGs, 37 since the former are tailored to the additive error assumption. We illustrate this question with the example in Fig. 1, which 37 38 is borrowed from Peña [\[19\].](#page--1-0) The ADMGs in the figure represent the causal model over the observed variables represented za 39 39 by the DAG. The oADMG is derived from the DAG by keeping the directed edges between observed variables, and adding 40 40 a bidirected edge between two observed variables if and only if they have a confounder [35, [Section](#page--1-0) 5]. The aADMG is 41 41 derived from the DAG by keeping the directed edges between observed variables, and adding an undirected edge between 42 42 two observed variables if and only if their unobserved causes are not separated in the DAG given the unobserved causes of 43 the rest of the observed variables. Clearly, the effect on *B* of an intervention on *A*, i.e. $p(B|\hat{A})$, is not identifiable from the 43 44 • oADMG [\[22,](#page--1-0) p. 94], but it is identifiable from the aADMG and is given by **AMAG and it is a struck** 44

$$
p(B|\widehat{A}) = \sum_{c} p(B|A,c)p(c). \tag{45}
$$

 48 To see it, recall that we assume additive noise. This implies that *C* determines U_C , which blocks the path $A\leftarrow U_A\rightarrow$ 48 49 49 *UC* → *UB* → *B* in the DAG. This can also be seen directly in the aADMG, as *C* blocks the path *A* − *C* − *B*. Therefore, we 50 50 can identify the desired causal effect by just adjusting for *C*, since *C* blocks all non-causal paths from *A* to *B*. It is worth 51 mentioning that there are also cases where the oADMG allows for causal effect identification whereas the aADMG does $^{-51}$ 52 not. One such case is shown in Fig. 2, where we have just replaced the edge $U_C\to U_B$ in Fig. 1 with the edge $U_C\leftarrow U_B$. 52 53 Specifically, $p(B|\widehat{A})$ is not identifiable from the aADMG by [Theorem 12](#page--1-0) in this article, whereas it is identifiable from the 53 ⁵⁴ oADMG, i.e. $p(B|\widehat{A}) = p(B|A)$. Therefore, oADMGs and aADMGs are more complementary than competing causal models. To $\frac{54}{2}$ ⁵⁵ further illustrate our point, we make the example in Fig. 1 more concrete by turning it into the following invented gambling ⁵⁵ 56 جون مورد المستخدم بين المستخدم بين المستخدم الم 57 57 game:

$$
U_A \sim N(0,\sigma) \tag{58}
$$

$$
U_C \sim N(U_A, \sigma) \tag{58}
$$

$$
U_B \sim N(U_C, \sigma) \tag{61}
$$

Please cite this article in press as: J.M. Peña, M. Bendtsen, Causal effect identification in acyclic directed mixed graphs and gated models, Int. J. Approx. Reason. (2017), http://dx.doi.org/10.1016/j.ijar.2017.06.015

ِ متن کامل مقا<mark>ل</mark>ه

- ✔ امکان دانلود نسخه تمام متن مقالات انگلیسی √ امکان دانلود نسخه ترجمه شده مقالات ✔ پذیرش سفارش ترجمه تخصصی ✔ امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله √ امکان دانلود رایگان ٢ صفحه اول هر مقاله √ امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب ✔ دانلود فورى مقاله پس از پرداخت آنلاين ✔ پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات
- **ISIA**rticles مرجع مقالات تخصصى ايران