Effect of psychotropic drug treatment on sterol metabolism

Željka Koradea, Wei Liub, Emily B. Warrenc, Kristan Armstrongd, Ned A. Porterb, Christine KonradiC,d,⁎

a Department of Pediatrics and Department of Biochemistry and Molecular Biology, UNMC, Omaha, NE 68198, United States
b Department of Chemistry and Vanderbilt Institute of Chemical Biology, Nashville, TN 37235, United States
c Department of Pharmacology, Vanderbilt University, Nashville, TN 37240, United States
d Department of Psychiatry, Vanderbilt University, Nashville, TN 37212, United States

Abstract

Cholesterol metabolism is vital for brain function. Previous work in cultured cells has shown that a number of psychotropic drugs inhibit the activity of 7-dehydrocholesterol reductase (DHCR7), an enzyme that catalyzes the final steps in cholesterol biosynthesis. This leads to the accumulation of 7-dehydrocholesterol (7DHC), a molecule that gives rise to oxysterols, vitamin D, and atypical neurosteroids. We examined levels of cholesterol and the cholesterol precursors desmosterol, lanosterol, 7DHC and its isomer 8-dehydrocholesterol (8DHC), in blood samples of 123 psychiatric patients on various antipsychotic and antidepressant drugs, and 85 healthy controls, to see if the observations in cell lines hold true for patients as well. Three drugs, aripiprazole, haloperidol and tramazodone increased circulating 7DHC and 8DHC levels, while five other drugs, clozapine, escitalopram/citalopram, lamotrigine, olanzapine, and risperidone, did not. Studies in rat brain verified that haloperidol dose-dependently increased 7DHC and 8DHC levels, while clozapine had no effect. We conclude that further studies should investigate the role of 7DHC and 8DHC metabolites, such as oxysterols, vitamin D, and atypical neurosteroids, in the deleterious and therapeutic effects of psychotropic drugs. Finally, we recommend that drugs that increase 7DHC levels should not be prescribed during pregnancy, as children born with DHCR7 deficiency have multiple congenital malformations.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Cholesterol is an essential component of cellular membranes (Maxfield and Tabas, 2005). As much as 25% of cholesterol and cholesterol derivatives are contained in the human brain, even though the brain accounts for only 2% of total body weight (Dietzscby and Turley, 2001, 2004). Although some of the body’s cholesterol is derived from nutritional sources, the brain depends predominantly on intrinsic de novo cholesterol biosynthesis as the blood-brain barrier limits the uptake of cholesterol from the circulation (Korade et al., 2009; Nicholas and Thomas, 1961).

Mitochondria play an important role in many aspects of cholesterol metabolism (Tatsuta et al., 2014). Endogenous cholesterol synthesis is essential for brain development, and intact cholesterol metabolism remains critical throughout life for normal brain function. In the elderly, high cholesterol is associated with better memory function, while low cholesterol is associated with an increased risk of depression (Huang and Chen, 2005; You et al., 2013).

Acetyl-CoA, a central player in energy metabolism, is the seed molecule for cholesterol biosynthesis, which in over 20 enzymatic steps leads to cholesterol (Fig. 1). Though the pathway branches at lanosterol, 7-dehydrocholesterol reductase (DHCR7) is crucial in both paths to complete the synthesis of cholesterol. In one branch DHCR7 catalyzes the conversion of 7-dehydrocholesterol (7DHC) into cholesterol, and in the other branch the conversion of 7-dehydrodesmosterol into desmosterol.

A number of psychotropic drugs have been shown to increase 7DHC levels in cell lines (Korade et al., 2016). A preliminary study suggested that patients on aripiprazole or tramazodone might have elevated blood levels of 7DHC, indicating DHCR7 inhibition (Hall et al., 2013). However, a comparison and contrast of the effects of a larger group of psychotropic drugs on cholesterol metabolism, levels of 7DHC, and its isomer 8-dehydrocholesterol (8DHC), in patients’ blood has not been carried out yet.

http://dx.doi.org/10.1016/j.schres.2017.02.001
0920-9964/© 2017 Elsevier B.V. All rights reserved.

Please cite this article as: Korade, Ž., et al., Effect of psychotropic drug treatment on sterol metabolism, Schizophr. Res. (2017), http://dx.doi.org/10.1016/j.schres.2017.02.001
Much of the current knowledge about DHCR7 comes from research of Smith-Lemli-Opitz syndrome (SLOS), caused by mutations in the DHCR7 gene. SLOS is characterized by altered CNS structure and function, manifested in developmental disabilities and autism (Bukelis et al., 2007; Nowaczky and Irons, 2012). While cholesterol deficiency likely plays a central role in the disease, so might be the accumulation of 7DHC levels (Witsch-Baumgartner et al., 2000). SLOS studies point to an important function of DHCR7 and cholesterol particularly during early brain development. Curiously, the disproportionate frequency of a small number of null alleles in SLOS has raised the possibility that decreased DHCR7 activity and increased levels of 7DHC confer an evolutionary advantage in heterozygous individuals, despite the devastating effects of homozygous mutations (Witsch-Baumgartner et al., 2000).

A competitive advantage of increased 7DHC levels could occur in its role as the sole source for endogenously synthesized vitamin D (cholecalciferol). Since polymorphisms in DHCR7 are associated with vitamin D levels, it has been suggested that higher concentrations of 7DHC might be protective against hypovitaminosis (Wang et al., 2010). Vitamin D deficiency is prevalent in Western populations and has been associated with memory function, depression, and psychosis (Anglina et al., 2013; Crews et al., 2013; Holick, 2009; McGrath et al., 2010). The presence of the vitamin D receptor in the brain indicates a role for vitamin D in brain function (Eyles et al., 2005). Moreover, the biologically active form of vitamin D, a metabolite of 7DHC and ligand for the vitamin D receptor, 1,25-dihydroxyvitamin D (dhVitD), mediates a diverse array of neuroprotective functions (Garcion et al., 2002).

Mitochondrial enzymes cleave 7DHC into novel, neurosteroid-like compounds (Acimovic et al., 2016; Marcos et al., 2004). Although neurosteroids were initially described as nuclear receptors that activate specific genetic programs, it is now accepted that they can also modulate neuronal excitability by rapid, non-genomic actions (Compagnone and Mellon, 2000; Omura, 2006; Slominski et al., 2015). Neurosteroids can have mood-stabilizing, anxiolytic, anticonvulsive and antidepressant effects, through modification of GABA and glutamate systems in the brain (Dubrovsky, 2005; Reddy et al., 2004; Zorumski et al., 2013). However, dependent on type, concentration and brain area in which they accumulate, they can also have the opposite effect (Dubrovsky, 2005). Thus, the effect of neurosteroids synthesized from elevated 7DHC on brain function is currently unknown.

Accumulation of 7DHC can also have negative consequences. As the clinical manifestations of SLOS demonstrate, disruption of DHCR7 activity, particularly during early development, has deleterious effects on brain function. While its role as a precursor for cholesterol, vitamin D and neurosteroids might be beneficial for brain function, 7DHC and 8DHC are a source of lipid peroxidation and oxysterols (Liu et al., 2013; Xu et al., 2009). Of relevance to treatment with psychotropic drugs, oxysterols have been associated with metabolic syndrome, a side effect of treatment with psychoactive drugs manifested in cardiovascular disease and obesity (Guillemot-Legris et al., 2016). Moreover, cellular stress caused by lipid peroxidation might contribute to the extrapyramidal side effects in the brain caused by treatment.

At this point, we are in need of more information about psychotropic drug effects on cholesterol metabolism and accumulation of 7DHC in patients. Understanding the individual profiles of psychotropic drugs is the first step toward determining if protection against lipid peroxidation and oxysterols in patients on these drugs can mitigate side effects, on one hand, and if an increase in vitamin D levels or formation of particular neurosteroids might contribute to the therapeutic profile, on the other. Furthermore, as the experience with SLOS shows, we need to identify which drugs inhibit DHCR7 activity and limit their prescription during pregnancy.