
Computers and Chemical Engineering 100 (2017) 1–8

Contents lists available at ScienceDirect

Computers and Chemical Engineering

j ourna l ho me pa g e: www.elsev ier .com/ locate /compchemeng

On-the-fly pruning for rate-based reaction mechanism generation

Kehang Hana, William H. Greena,∗, Richard H. Westb

a Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
b Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States

a r t i c l e i n f o

Article history:
Received 12 July 2016
Received in revised form
31 December 2016
Accepted 3 January 2017
Available online 31 January 2017

Keywords:
Memory reduction
Mechanism generation
Pruning

a b s t r a c t

The number of possible side reactions and byproduct species grows very rapidly with the size of a chem-
ical mechanism. A memory-efficient algorithm for automated mechanism generation is presented for
coping with this combinatorial complexity. The algorithm selects normalized flux as a metric to identify
unimportant species during model generation and prunes them with their reactions, without any loss of
accuracy. The new algorithm reduces memory requirements for building kinetic models with 200–300
species by about a factor of 4, or for fixed computer hardware makes it possible to create models including
about twice as many species as was previously possible. The increased capability opens the possibility of
discovering unexplored reaction networks and modeling more complicated reacting systems.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Detailed kinetic mechanisms, as a bridge between molecular
properties and macroscopic phenomena, are increasingly recog-
nized as necessary for better understanding and designing reacting
systems to meet economic and environmental needs. In systems
with relatively unselective chemistry, such as pyrolysis, combus-
tion, partial oxidation and many polymerizations, tens to even
hundreds of thousands of species are present, which makes manual
model construction very difficult and time-consuming. Thus, over
past decades various automatic kinetic model generation packages
have been developed and are increasingly adopted, among which
are MAMOX (Ranzi et al., 1995), EXGAS (Battin-Leclerc, 2002), Net-
Gen (Broadbelt et al., 1994), RMG (Song, 2004) and RMG-Py (Gao
et al., 2016). The latter, RMG-Py, developed by the Green group
at MIT and the West group at Northeastern University, constructs
kinetic models by choosing important species based on a flux-
ranking strategy.

However, when dealing with complicated reacting systems (e.g.,
higher carbon number fuels, higher equivalence ratios), automated
model generators are often restricted by hardware limitations
since numerous species and their reactions quickly fill up the
computer memory (Klinke and Broadbelt, 1997). To achieve high
fidelity, a very large number of possible reactions, intermediates,
and byproducts must be considered when constructing the reaction
mechanism. Because the number of possible bimolecular reactions

∗ Corresponding author.
E-mail address: whgreen@mit.edu (W.H. Green).

scales as the square of the number of species in the model, the
memory usage increases superlinearly (see Fig. 1).

Currently, generating a model by RMG-Py with more than 230
species on a computer with 8 GB RAM leads to a drastic slowdown
in performance, as the operating system must constantly swap
data between RAM and disk. Although this issue will eventually
be relieved by future improvement of RAM size, it usually takes
time; historically it took the industry almost 5 years to increase
standard RAM size by a factor of 4. Thus it would be very beneficial
to improve RMG to reduce the RAM requirements. To deal with this
problem, there have been several attempts to develop software that
combines model generation and model reduction. Among them is
Klinke and Broadbelt’s work, which incorporated into their reac-
tion mechanism generation algorithm in NetGen a radical lumping
strategy that groups radicals based on their similarity in reactivity,
and on-the-fly sensitivity analysis that evaluates the importance of
a certain species based on its impact on fluxes of IN (Important and
Necessary) species (Klinke and Broadbelt, 1997). This integration
allowed NetGen to create more accurate kinetic models.

However, the Klinke and Broadbelt approach cannot be imple-
mented in RMG, due to different model generation strategies: (1)
RMG is designed to distinguish all the radicals so that all the
thermo-chemistry and kinetic parameters can be calculated from
first principles; and (2) edge species in RMG do not react, leaving
no impact on the fluxes of core species, which makes sensitivity
evaluation ineffective. Consequently, this paper presents an alter-
native memory-efficient approach for on-the-fly model reduction
during mechanism generation. By identifying and pruning unim-
portant species based on flux analysis in early stages, RMG was able
to generate a model of over 400 species without memory shortage.

http://dx.doi.org/10.1016/j.compchemeng.2017.01.003
0098-1354/© 2017 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.compchemeng.2017.01.003
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2017.01.003&domain=pdf
mailto:whgreen@mit.edu
dx.doi.org/10.1016/j.compchemeng.2017.01.003

2 K. Han et al. / Computers and Chemical Engineering 100 (2017) 1–8

Fig. 1. Memory (RAM) usage by RMG-Py grows super linearly as the reaction mech-
anism is enlarged to improve fidelity. This example is partial oxidization of natural
gas.

Fig. 2. Model generation workflow of original algorithm.

2. Method

2.1. The original algorithm (no pruning)

Rate-based mechanism generation algorithms such as RMG and
RMG-Py work by a “core–edge model” approach (Susnow et al.,
1997). The model “core” collects all the important species selected
by a rate-based algorithm, while the model “edge” collects all the
other species appearing as products of reactions of the core species.
The “edge” serves as a species pool for future selections of important
species. At each iteration one of the edge species is moved into the
“core”, and new species are added to the “edge”. At the end of model
generation, the “core” model will be the final model to be exported.

Typical RMG model generation workflow is illustrated in Fig. 2.
User input will be translated to initial core–edge model, which is
further transformed into an ODE system. Simulation starts from
t = 0, along which edge species’ fluxes will be monitored at each

time point. If an edge species’s flux becomes greater than a pre-
defined threshold, that species will be selected to the core, next
the new core species will be reacted with other core species so
that the model is enlarged. The updated model will trigger a new
ODE simulation. This process continues iteratively until the model
integrates to the specified final time. All reactions involving only
core species are output as the final model.

As Fig. 3 shows in more detail, an RMG iteration starts with a
pool of species (species A, B, C in core, D, E, F, and G in edge), and
solves the ODE system corresponding to reactions within the set
of core species. From the resulting concentrations of core species,
reacting fluxes towards each edge species are computed as follows,
and then compared to a flux threshold.

rspeciesi
(t) =

∑
j

�i,jrj(t)

where �i,j is stoichiometric coefficient of species i in reaction j
and rj is reaction rate for reaction j usually written in Arrhe-

nius form rj(t) = kjT(t)nj exp(−(Ej
a/RT(t)))

∏
m

c�m,j

m (t). For instance,

at some time the flux towards edge species D is found to be sig-
nificant, i.e., rD(t) > flux threshold, then the computation is halted,
and D is moved to the “core”. Specifically, the threshold is calcu-
lated as flux threshold = Rchar * toleranceMoveToCore, where Rchar
is the root sum square of core species fluxes and toleranceMove-
ToCore is specified by the user according to his/her preference of
final mechanism accuracy (see more detail on toleranceMove-
ToCore in Section 2.2.1). RMG will later enlarge the core–edge
model by exploring reactions between D and other core species.
After model “core” and “edge” are updated, the simulator solves the
system again from t = 0 to the point when next important species
is discovered. The whole iterative process terminates when the
user-specified goal time/conversion is reached and no additional
important species is identified.

2.2. The new algorithm (with pruning)

The goal of RMG is to produce a final kinetic model contain-
ing core species and their reactions. However, the number of edge
species is much larger than that of core species (typically by sev-
eral orders of magnitude), so most memory is consumed by the
model “edge”. Furthermore, among the edge species are many
minor species that have little chance to become core species; they
can be structurally unstable or difficult to be formed and usually
have low rspeciesi

. Thus, pruning those minor edge species can be
helpful to mitigate RAM limitation. In order to achieve that, prun-
ing module should first identify unimportant edge species and then
delete them and their reactions while minimizing the impact on
model accuracy.

The pruning module is integrated into the original RMG package
illustrated in Fig. 5; the main difference from the original workflow
is, after identifying new core species, simulation will continue to
final time to figure out maximum normalized flux for each edge
species:

maxt ∈ [0,tfinal]

(
fluxi(t)
Rchar(t)

)

where tfinal is set by user for simulation termination, see Fig. 2.
Those species with maxt ∈ [0,tfinal]

(
fluxi(t)/Rchar(t)

)
≤

toleranceKeepInEdge will be pruned (e.g., in Fig. 4, edge species
E and F having relatively small flux are pruned). The simulation
will only stop if some edge flux exceeds threshold2 (computed as
threshold2 = Rchar * toleranceInterruptSimulation, see more
detail in Section 2.2.2), in which case pruning won’t be executed.

https://isiarticles.com/article/156939

