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An efficient high order plane wave time domain algorithm is presented for analyzing the transient scattering 

from three dimensional electrically large conducting objects. This method uses a set of hierarchical divergence- 

conforming vector basis functions to accurately represent the current distribution on the perfect electrically 

conducting (PEC) surface. The higher order functions can significantly reduce the number of unknowns without 

compromise on the accuracy. The time domain combined field integral equation (TD-CFIE) is then discretized 

using the hierarchical divergence-conforming vector basis functions and shifted Lagrange polynomial functions 

in spatial and time domain, respectively. The final matrix equation can be accelerated using the plane wave time 

domain (PWTD) algorithm. Finally, a parallel algorithm that can execute on a distributed-memory parallel cluster 

is developed, which provides an appealing avenue for analyzing the transient scattering from three-dimensional 

electrically large complex PEC objects. Numerical examples are given to demonstrate the accuracy and efficiency 

of the method. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

With the continuous improvement of late time instability occurring 
in the marching-on-in-time (MOT) based time domain integral equation 
(TDIE) method [1–7] , the TDIE method has been of considerable inter- 
est in the computational electromagnetic (CEM) community for their ap- 
pealing avenue in analyzing transient and broadband electromagnetics 
problems [8–10] . The computational complexity and memory require- 
ment for the analysis of transient scattering from an object using the 
classical MOT algorithm are 𝑂( 𝑁 𝑡 𝑁 

2 
𝑠 
) and 𝑂( 𝑁 

2 
𝑠 
) , respectively, where 

N t and N s are the numbers of temporal and spatial basis functions. The 
high computational burden greatly hinders the performance of TDIE al- 
gorithm to analyze the large-scale electromagnetic scattering problems. 
A great deal of attention has been focused on the development of time- 
domain fast solvers, among which, the plane wave time domain (PWTD) 
algorithm is the most representative one. Relying on a Whittaker-type 
expansion of transient fields in terms of propagating plane waves, the 
computational cost and memory requirements of the PWTD algorithm 

scale as O ( N t N s log 2 N s ) and 𝑂( 𝑁 

1 . 5 
𝑠 

) , respectively [11–13] . However, the 
PWTD algorithm can only reduce the computational complexity of the 
classical MOT algorithm. There is another approach that directly re- 
duces the number of unknowns to be solved by using the higher order 
spatial basis functions [14–18] . If we combine the fast algorithm with 
the high order basis function in the framework of the MOT based TDIE, 
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this will greatly reduce the computational time and memory consump- 
tion of the TDIE method, from the perspective of reducing the number 
of unknowns and the computational complexity. The similar approach 
has been extensively studied in the frequency domain method of mo- 
ments (MOM) [21–24] . However, few works has been proposed in the 
time domain. 

In this paper, an efficient high order PWTD algorithm is presented 
for analyzing the transient scattering from three dimensional electrically 
large conducting objects. We first use a set of hierarchical divergence- 
conforming vector basis functions [19–20] and shifted Lagrange poly- 
nomial functions to discrete the time domain combined field integral 
equation (TD-CFIE). The hierarchical divergence-conforming vector ba- 
sis functions can accurately represent the current distribution on the PEC 

surface and significantly reduce the number of unknowns without com- 
promise on the accuracy. Then the final matrix equation can be accel- 
erated using the PWTD algorithm. Finally, a parallel high order PWTD 

algorithm is developed, which provides an appealing avenue for ana- 
lyzing the transient scattering from three-dimensional electrically large 
complex PEC objects. The described solver executes on a distributed- 
memory parallel cluster and uses the message passing interface (MPI) 
paradigm to communicate data between processors. Numerical exam- 
ples are given to demonstrate the accuracy and efficiency of the pro- 
posed method. 
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2. Formulation 

This section describes the implementation of proposed method in de- 
tail. Section 2.1 derives and establishes the time-domain electric field, 
magnetic field and combined field integral equation for solving the tran- 
sient electromagnetic characteristics from PEC object. Section 2.2 de- 
scribes the marching on-in-time scheme for solving these equations and 
the specific spatial basis functions adopted in this paper. Then, the high 
order PWTD algorithm is introduced in Section 2.3 . Finally, a parallel 
implementation of the scheme is described in Section 2.4 . 

2.1. Time domain integral equation 

When an arbitrary shaped PEC object residing in free space with per- 
meability 𝜇0 and permittivity 𝜀 0 is illuminated by a transient incident 
field E 

inc ( r ,t ) and H 

inc ( r ,t ). The induced current J ( r , t ) on surface S gen- 
erates a scattered field E 

sca ( r ,t ) and H 

sca ( r ,t ) which can be characterized 
as 

𝐄 

𝑠𝑐𝑎 ( 𝒓 , 𝑡 ) = − 

𝜇0 
4 𝜋 ∬𝑠 

𝑑 𝑆 

1 
𝑅 

𝜕𝐉 ( 𝐫 ′, 𝜏) 
𝜕𝑡 

+ 

∇ 

4 𝜋𝜀 0 ∬𝑠 

𝑑 𝑆 ∫
𝜏

0 

∇ 

′ ⋅ 𝐉 ( 𝐫 ′, 𝑡 ′) 
𝑅 

𝑑 𝑡 ′ (1) 

𝐇 

𝑠𝑐𝑎 ( 𝒓 , 𝑡 ) = ∇ × 1 
4 𝜋 ∬𝑠 

𝑑𝑆 

𝐉 ( 𝐫 ′, 𝜏) 
𝑅 

(2) 

where J ( r , t ) denotes the induced current on the PEC surface S, r 

and r ′ represent the observation point and source point, respectively, 
R = | r − r ′ |, c is the speed of light in free space, 𝜏 = t − R / c is the retarded 
time. 

According to the boundary condition on the PEC surface: 

�̂� ( 𝐫) × �̂� ( 𝐫) ×
[
𝐄 

𝑖𝑛𝑐 ( 𝐫, 𝑡 ) + 𝐄 

𝑠𝑐𝑎 ( 𝐫, 𝑡 ) 
]|||𝑆 = 0 (3) 

�̂� ( 𝐫) ×
[
𝐇 

𝑖𝑛𝑐 ( 𝐫, 𝑡 ) + 𝐇 

𝑠𝑐𝑎 ( 𝐫, 𝑡 ) 
]|||𝑆 = 𝐉 ( 𝐫, 𝑡 ) (4) 

we can get the time domain electric and magnetic field integral 
equations: 

�̂� ( 𝐫) × �̂� ( 𝐫) × 𝐄 

𝑖𝑛𝑐 ( 𝒓 , 𝑡 ) 

= �̂� ( 𝐫) × �̂� ( 𝐫) ×
𝜇0 
4 𝜋 ∬𝑠 

𝑑𝑆 

1 
𝑅 

𝜕𝐉 ( 𝐫 ′, 𝜏) 
𝜕𝑡 

− ̂𝐧 ( 𝐫) × �̂� ( 𝐫) × ∇ 

4 𝜋𝜀 0 ∬𝑠 

𝑑𝑆 ∫
𝜏

0 

∇ 

′ ⋅ 𝐉 ( 𝐫 ′, 𝑡 ′) 
𝑅 

𝑑𝑡 ′

= 𝑳 𝑒 { 𝐉 ( 𝐫, 𝑡 ) } (5) 

�̂� ( 𝐫) ×𝐇 

𝑖𝑛𝑐 ( 𝒓 , 𝑡 ) 

= 

𝐉 ( 𝐫, 𝑡 ) 
2 

− ̂𝐧 ( 𝐫 ) × 1 
4 𝜋 ∬𝑠 

𝑑 𝑆 ∇ × 𝐉 ( 𝐫 ′, 𝜏) 
𝑅 

= 𝑳 ℎ { 𝐉 ( 𝐫 , 𝑡 ) } (6) 

Then the time domain combined field integral equation (TD-CFIE) 
can be derived as a linear combination of the time domain electric and 
magnetic field integral equations: 

𝐕 𝑐 

{
𝐄 

𝑖𝑛𝑐 ( 𝐫, 𝑡 ) , 𝐇 

𝑖𝑛𝑐 ( 𝐫, 𝑡 ) 
}

= 𝛼�̂� ( 𝐫) × �̂� ( 𝐫) × 𝐄 

𝑖𝑛𝑐 ( 𝐫, 𝑡 ) + (1 − 𝛼) 𝜂�̂� ( 𝐫) ×𝐇 

𝑖𝑛𝑐 ( 𝐫, 𝑡 ) 
= 𝛼𝑳 𝑒 { 𝐉 ( 𝐫, 𝑡 ) } + 𝜂(1 − 𝛼) 𝑳 ℎ { 𝐉 ( 𝐫, 𝑡 ) } 
= 𝑳 𝑐 { 𝐉 ( 𝐫, 𝑡 ) } (7) 

where ̂𝐧 ( 𝐫) is the outward directed unit normal, 𝜂 is the wave impedance 
of the free space. 𝛼is a positive real constant. The EFIE and the MFIE can 
be derived from the CFIE by setting 𝛼 = 1 and 𝛼 = 0, respectively. So the 
discussions hereafter will focus on the CFIE. 

Fig. 1. The mapping relationship between the quadratic curvilinear triangle and the pa- 

rameter triangle. 

2.2. Discretization and marching on-in-time scheme 

To solve the above equations numerically, the PEC surface S is dis- 
cretized into curved triangular elements firstly. Then, the surface current 
density J ( r , t ) can be expanded in terms of a set of vector spatial basis 
functions and scalar temporal basis functions as 

𝐉 ( 𝐫, 𝑡 ) ≅
𝑁 𝑠 ∑
𝑛 =1 

𝑁 𝑡 ∑
𝑙=1 

𝐼 𝑙 
𝑛 
𝒇 𝑛 ( 𝐫) 𝑇 𝑙 ( 𝑡 ) (8) 

Here 𝐼 𝑙 
𝑛 

are the unknown coefficients. N t and N s denote the number 
of time steps and spatial basis functions, respectively. 

Substituting ( 8 ) into ( 7 ), Galerkin testing the Eq. (7) with the surface 
basis function f m 

( r ) and point matching at time i Δt , leads to the system 

of equations that can be represented explicitly in a matrix form as 

𝐙 

0 𝐈 𝑖 = 𝐕 

𝑖 − 

𝑖 −1 ∑
𝑗=1 

𝐙 

𝑖 − 𝑗 𝐈 𝑗 (9) 

The expression of matrix elements is [
𝑍 

𝑖 − 𝑗 ]
𝑚𝑛 

= 

⟨
𝒇 𝑚 ( 𝐫 ) , 𝑳 𝑐 

{
𝒇 𝑛 ( 𝐫 ) 𝑇 𝑖 − 𝑗 ( 𝑡 ) 

}⟩
(10) 

[
𝑉 𝑖 

]
𝑚 
= 

⟨
𝒇 𝑚 ( 𝐫 ) , 𝐕 𝑐 

{
𝐄 

𝑖𝑛𝑐 ( 𝐫, 𝑡 ) , 𝐇 

𝑖𝑛𝑐 ( 𝐫, 𝑡 ) 
}⟩|||𝑡 = 𝑡 𝑖 (11) 

Here, the spatial basis functions are the higher order hierarchical 
basis functions defined on curved parametric triangles. We use software 
ANSYS to generate the quadratic curvilinear elements with six nodes 
[27] . Fig. 1 shows the mapping relationship between the quadratic 
curvilinear triangle and the parameter triangle. The quadratic curvilin- 
ear triangle can be transformed into the planar parameter triangle using 
the transformation 

𝐫 ( 𝑥, 𝑦, 𝑧 ) = 𝐫 200 𝜉1 
(
2 𝜉1 − 1 

)
+ 𝐫 020 𝜉2 

(
2 𝜉2 − 1 

)
+ 𝐫 002 𝜉3 

(
2 𝜉3 − 1 

)
+ 𝐫 110 4 𝜉1 𝜉2 + 𝐫 011 4 𝜉2 𝜉3 + 𝐫 101 4 𝜉1 𝜉3 (12) 

Based on the parametric triangular patch, higher order hierarchical 
vector basis functions can then be constructed. The lowest-order vec- 
tor basis functions are the curvilinear RWG functions and the specific 
expression is 

𝒇 𝑒 1 , 0 ( 𝐫) = 

1 
𝐽 

[ (
𝜉1 − 1 

) 𝜕𝐫 
𝜕 𝜉1 

+ 𝜉2 
𝜕𝐫 
𝜕 𝜉2 

] 

𝒇 𝑒 2 , 0 ( 𝐫) = 

1 
𝐽 

[ 
𝜉1 

𝜕𝐫 
𝜕 𝜉1 

+ 

(
𝜉2 − 1 

) 𝜕𝐫 
𝜕 𝜉2 

] 

𝒇 𝑒 3 , 0 ( 𝐫) = 

1 
𝐽 

[ 
𝜉1 

𝜕𝐫 
𝜕 𝜉1 

+ 𝜉2 
𝜕𝐫 
𝜕 𝜉2 

] 
(13) 

where J is the Jacobian. The first subscript denotes the edge and the 
second subscript denotes the order of the polynomials. The superscript 
denotes that they are edge-based basis functions. 

The higher order bases functions are obtained by forming the prod- 
uct of the curvilinear RWG basis functions with a set of polynomial func- 
tions. Here we give the edge-based and face-based basis functions up to 
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