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a b s t r a c t 

Fracture mechanics analysis in terms of evaluating stress intensity factors of an anti-plane isotropic 

cracked layer is carried out using strain gradient elasticity theory. The crack plane is assumed parallel 

to the layer edges. Both volumetric and surface strain gradient material characteristic lengths are con- 

sidered in formulations and numerical solutions. Two boundary value problems corresponding to “stress- 

free” and “clamped” boundaries are considered in which each solution is reduced to the dual integral 

equations. The Fredholm integral equation, proceeding from the dual integral equations, is numerically 

solved to evaluate crack tip stress intensity factor. Stress intensity factors for stress-free boundary con- 

ditions are higher with smaller height (or with a longer crack) and vice versa for clamped boundaries. 

Volumetric strain gradient effect reduces stress intensity factor and demonstrates strong size effect on a 

smaller scale. Crack stiffness becomes more pronounced with positive surface strain gradient, while neg- 

ative surface gradient leads to a more complaint crack. In general, the contribution of volumetric strain 

gradient is shown to be more dominant than that of surface strain gradient. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Material discontinuities in micro and nanoscale structures pro- 

mote its mechanical behavior to be size dependent. This size de- 

pendency (size effect) has been thoroughly observed in experimen- 

tal studies ( Fleck & Hutchinson, 1997; Lam et al., 2003; McFarland 

& Colton, 2005 ). The discrete nature of the material medium (at 

a smaller scale) is not considered in classical continuum theories 

where internal dimensions of the structure are assumed negligi- 

ble in comparison to the external ones. Hence, material’s elastic 

as well as the plastic behavior becomes scale-free and indepen- 

dent of an underlying microstructure. Over the years, several theo- 

ries have been proposed incorporating intrinsic length scale in the 

continuum model to cater for size effect. Some of the well-known 

theories in this regard are non-local elasticity theory ( Eringen and 

Edelen, 1972 ), couple stress theory ( Yang et al., 2002 ) and strain 

gradient theory ( Aifantis, 1992, 2003; Lam et al., 2003 ). Pioneer 

work related to strain gradient theory was first postulated by 

Mindlin (1964, 1965 ) and further re-established and updated by 

Aifantis in (1992) and (2003) , respectively. The physical meaning of 

higher order strain tensor employed in gradient elasticity theories 

is recently provided by Polizzotto (2016) . On the other hand, the 

strain gradient theory proposed by Vardoulakis et al. (1996) , pro- 

vides the simplest and most practical generalization of correspond- 
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ing constitutive theory accounting for only two material charac- 

teristic lengths (with the units of length). These material con- 

stants are responsible for material volumetric and surface strain 

gradient terms, usually represented as l and l ́, respectively ( Chan 

et al., 2008; Paulino et al., 2003; Vardoulakis et al., 1996 ). This 

theory has been successfully employed to observe size effects 

( Aifantis, 2011 ) in various engineering problems such as in twisted 

micro-wires and bent micro-cantilever beams ( Aifantis, 1999 ). A 

comprehensive review of this gradient theory and applications of 

an internal length gradient across various scales is recently pro- 

vided by Aifantis (2016) . Further application and validation of this 

simpler strain gradient theory are confirmed by Vardoulakis and 

Sulem (1995) and Giannakopoulos and Stamoulis (2007) . Very re- 

cently application can be found in the fracture study of double 

cantilever beam fracture mechanics specimen conducted by the 

authors ( Joseph et al., 2017 ). 

Quite a few studies related to the fracture problem in infi- 

nite medium (in which the geometric disturbance is only due 

to crack), based on gradient elasticity theories, are conducted 

over the years. For instance, one of the pioneering works in the 

field of gradient elasticity in Mode-III crack problem was con- 

ducted by Vardoulakis et al. (1996), Exadaktylos (1998) and sub- 

sequently by Exadaktylos and Vardoulakis (2001) . In these papers, 

two material parameters l and l ́ related to volumetric and sur- 

face strain gradients were used to solve two boundary value prob- 

lems i.e. traction boundary value problem and mixed boundary 

value problem. Paulino et al. (2003) and Chan et al. (2008) em- 
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Fig. 1. Schematic diagrams. 

ployed gradient elasticity theory to solve mode III crack prob- 

lems in functionally graded materials. In the first case, crack is as- 

sumed perpendicular ( Paulino et al., 2003 ), while in second case 

crack plane is parallel to the material gradation ( Chan et al., 2008 ). 

Fannjiang et al. (2002) employed a hyper-singular integrodifferen- 

tial equation approach to solve the anti-plane shear crack problem 

using strain gradient elasticity theory. Some interesting informa- 

tion related to dislocation based-gradient elastic fracture mechan- 

ics for the anti-plane crack problem is discussed by Mousavi and 

Aifantis (2015) . A very comprehensive study related to an anti- 

plane analysis of an infinite plane with multiple cracks based on 

strain gradient theory is recently conducted by Karimipour and Fo- 

tuhi (2017) . 

Above studies are strictly related to the bodies whose edges 

are far away and any disturbance in the material medium is pri- 

marily due to crack initiation and propagation. However, in many 

practical engineering applications, the specimen boundaries are fi- 

nite and hence contribute significantly to its fracture behavior. 

One such case is the crack initiation and propagation in elas- 

tic media of the form of layer/strip with finite height. Estimation 

of fracture properties in this case, such as stress intensity fac- 

tor at the crack tip, is extremely vital to accurately predict crack 

growth rates. For classical case, several analytical models have 

been proposed by researchers using different approaches. For in- 

stance, closed form solutions of a crack at the mid-plane of elas- 

tic media subjected to anti-plane shear stress are obtained by 

( Yang, 1997 ). Singh et al. (1981) employed Fourier transform tech- 

nique, while Tait and Moodie (1981) utilized the complex variable 

method to provide the closed form solution of mode-III crack mov- 

ing along the center of an elastic strip. On the other hand, the solu- 

tion of interface crack between two dissimilar materials in a closed 

form is provided by Li (2001) . For an anti-plane interface crack 

between two dissimilar magneto-electroelastic layers, Wang and 

Mai (2006) evaluated closed-form solutions for stress intensity 

factors. Furthermore, thorough investigations of mode-III crack in 

multi-layered composites are provided by Sih and Chen (1981) . 

According to authors’ knowledge, most of the models in liter- 

ature may be divided into two groups; The first group relates to 

the evaluation of closed form solution of an anti-plane crack in an 

infinite medium based on gradient elasticity theories and the sec- 

ond group comprises those classical studies which are conducted 

to evaluate the closed form solution of cracked elastic strip/layer 

(finite boundaries). Therefore, in this article the simplest strain 

gradient theory (proposed by Vardoulakis et al. 1996, Exadakty- 

los, 1998 and subsequently elaborated by Exadaktylos and Var- 

doulakis, 2001 ) comprising two material parameters, related to 

volumetric and surface strain gradients, respectively, is applied to 

solve the mode III crack problem in an elastic isotropic layer. The 

objective here is to numerically estimate the crack tip stress inten- 

sity factors of a crack propagated at the middle plane of an elastic 

isotropic layer having finite height. Two types of boundary value 

problems are considered i.e. stress-free boundaries and clamped 

boundaries. The solution of each problem is reduced to dual inte- 

gral equations. The kernel of the Fredholm integral equation (an 

improper integral that ranges from 0 to infinity) of the second 

kind, thus obtained (by applying the method of Copson (1961) on 

the dual integral equations) is numerically solved by using the col- 

location method of Gauss–Laguerre quadrature. 

2. Theoretical formulations 

This section introduces the constitutive equations and theo- 

retical formulations of an isotropic elastic layer of finite thick- 

ness using strain gradient theory. Firstly, the constitutive equa- 

tions are derived without incorporating surface strain gradient ef- 

fect ( l ́= 0) followed by the detailed analysis of complete strain 

gradient model (with both volumetric and surface strain gradient 

effect). The approach considered in this paper is similar to one 

adopted by Vardoulakis et al. (1996) and Exadaktylos (1998) . 

Consider a crack of length 2 a placed at the mid plane of an 

isotropic layer with thickness (height) 2 h . The boundaries of the 

layer are at y = ± h and reference axes are shown in Fig. 1 a. The 

crack surfaces are subjected to the applied anti-plane shear stress 

( τ 1 ) as shown in Fig. 1 b. The conditions at y = 0 are given as: 

τ yz ( x ,0) = −τ 1 for | x | < a and w z ( x ,0) = 0 for | x | ≥ a . For the upper 

half plane i.e. y ≥ 0, the stresses and double stress derived from the 

constitutive equations of gradient elasticity with surface energy are 

given as ( Chan et al., 2008; Vardoulakis et al., 1996 ) 

τzx = G 

[
∂ w z 

∂x 
− l 2 ∇ 

2 ∂ w z 

∂x 

]
(1a) 

τyz = G 

[
∂ w z 

∂y 
− l 2 ∇ 

2 ∂ w z 

∂y 

]
(1b) 

μxxz = G l 2 
∂ 2 w z 

∂ x 2 
(1c) 

μxyz = G l 2 
∂ 2 w z 

∂ x∂ y 
(1d) 

μyxz = G 

[
−l ′ ∂ w z 

∂x 
+ l 2 

∂ 2 w z 

∂ x∂ y 

]
(1e) 

μyyz = G 

[
−l ′ ∂ w z 

∂y 
+ l 2 

∂ 2 w z 

∂ y 2 

]
(1f) 

Here ∇ 

2 = ∂ 2 / ∂x 2 + ∂ 2 / ∂y 2 , l and l ́ are the volumetric and sur- 

face material characteristic lengths, respectively. For an anti-plane 

shear crack problem as depicted in Fig. 1 , we have u x = u y = 0, 

u z � = 0. Also σ xx = σ yy = σ zz = τ xy = 0 while τ yz � = 0 and τ xz � = 0. 

The equilibrium equation i.e. ∂ τ yz / ∂ y + ∂ τ xz / ∂ x = 0 with the help 

of equations in (1) may be expanded as 

∇ 

2 w z − l 2 ∇ 

4 w z = 0 (2a) 
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