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A B S T R A C T

This work presents a general formulation and implementation in solid-shell elements of the refined zigzag
theory and the trigonometric shear deformation theory in an unified way. The model thus conceived is aimed for
use in the analysis, design and verification of structures made of composite materials, in which shear strains
have a significant prevalence. The refined zigzag theory can deal with composite laminates economically, adding
only two nodal degrees of freedom, with very good accuracy. It assumes that the in-plane displacements have a
piece-wise linear shape across the thickness depending on the shear stiffness of each composite layer. The
trigonometric theory assumes a cosine variation of the transverse shear strain. A modification of this theory is
presented in this paper allowing its implementation with C0 approximation functions. Two existing elements are
considered, an eight-node tri-linear hexahedron and a six-node triangular prism. Both elements use a modified
right Cauchy-Green deformation tensor C where five of its six components are linearly interpolated from values
computed at the top and bottom surfaces of the element. The sixth component is computed at the element
center and it is enhanced with an additional degree of freedom. This basic kinematic is improved with a
hierarchical field of in-plane displacements expressed in convective coordinates. The objective of this approach
is to have a simple and efficient finite element formulation to analyze composite laminates under large
displacements and rotations but small elastic strains. The assumed natural strain technique is used to prevent
transverse shear locking. An analytic through-the-thickness integration and one point integration on the shell
plane is used requiring hourglass stabilization for the hexahedral element. Several examples are considered on
the one hand to compare with analytical static solutions of plates, and on the other hand to observe natural
frequencies, buckling loads and the non-linear large displacement behavior in double curved shells. The results
obtained are in a very good agreement with the targets used.

1. Introduction

The development and use of solid-shell elements have notably
increased in the last decade. Particularly by the use of enhanced
assumed strain (EAS) techniques in elements with reduced integration
on the shell plane (8-node elements). The solid-shell elements have
important advantages compared with shell elements as they allow to
use three-dimensional constitutive relations, to get rid of rotational
degrees of freedom, to modelize geometrical details and boundary
conditions more faithfully, to deal with contact conditions on the real
contact external surfaces, etc. Unfortunately this better geometric
representation involves a greater computational cost for the through-
the-thickness numerical integration. Solid-shell elements behave simi-

lar to shells elements based on the first order shear deformation theory
(FSDT) as they naturally include the transverse shear strains, although
the plane stress condition is imposed in an integral sense and not
point-wise as shell elements do.

According to the properties of the composite laminates and the
expected accuracy (in terms of stresses or displacements), different
approaches are considered for the structural analysis. For through-the-
thickness highly heterogeneous laminates, the classical laminated plate
theory (CLPT) leads to poor predictions. Similar unacceptable results
are obtained with the FSDT even if suitable shear correction factors
(SCF) are used to include the effect of the through-the-thickness
heterogeneity. The main drawbacks are derived from the assumption
of linear displacement across the thickness, which cannot intrinsically
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satisfy the interlaminar shear stress continuity (IC) and the surface
conditions prescribed by the equilibrium equations [6]. The CLPT and
FSDT are only advisable when the length-to-thickness ratio is high and
global structural responses are required [20,21]. A further improve-
ment in this direction comes from the higher order transverse shear
theories (HOT) that belong, as well as CLPT and FSDT, to the so-called
equivalent single layer theories (ESL). In these theories, the in-plane
displacements are suitable smooth functions of the transverse coordi-
nate, with the number of the published shear shape functions
assumption being large and varied (see for instance
[5,16,17,19,26,31,32]). HOT are more accurate than CLPT and
FSDT, but the continuity of the shear strains at interfaces leads to a
discontinuity in the shear stress distribution, and although, in princi-
ple, they do not require the use of SCF, for highly heterogeneous
laminates they lead to a very stiff behavior.

The most suitable technique for the analysis of composite materials
is the use of three-dimensional solid finite elements. However it
becomes prohibitively expensive as the number of layers in the
laminate increases (it can be as large as one hundred), in optimization
analysis or for non-linear problems. It is feasible to group multiple
layers within one single layer with combined properties in order to
maintain the number of degrees of freedom (DOFs) of the problem
within manageable limits as suggested in [18]. The accuracy in
transverse shear stresses can also be improved using hybrid elements
including stresses as additional DOFs [35].

Layer-wise approaches, in which the thickness of the laminate is
divided into a number of layers which may or may not coincide with the
physical number of layers, are more accurate than ESL theories. A
through-the-thickness approximation of the displacements at layer
level is assumed. A review of these techniques can be seen in [27].
These techniques have the same drawback of using three dimensional
solid elements as the number of layers increases.

For angle-ply laminates and those with a low order of heterogeneity
one can consider a smooth transverse shear variation across the
thickness as proposed by HOT including, for instance, the trigono-
metric shear deformation theory (TSDT) [5,17,24,25].

For sections with a high degree of heterogeneity, the analysis with
solid models and layer-wise approaches shows that the in-plane
displacement profiles are far from a smooth curve that could be
approximated by a polynomial of third order or higher. This has led
to the so called zigzag theories where the in-plane displacement
functions are only Co continuous with a zigzag profile, possibly with
strong discontinuities in the derivatives (associated to the transverse
shear strain) to fit the IC of adjacent layers with shear modulus that can
differ by several orders of magnitude. A review of the evolution of these
theories can be seen in [2]. More recently, a refined version of this
approach has been presented [29], where two hierarchical DOFs are
added to the five DOFs of the FSDT enhancing the linear through-the-
thickness interpolation. This approach leads to constant transverse
shear stresses at each layer (i.e. discontinuous) as they are computed
from the constitutive equations; however it allows dealing with
clamped boundary conditions, a limitation of the previous zigzag
theories in which it is based on.

This refined zigzag theory (RZT), that makes the use of SCF
unnecessary, has been implemented in 2D beam finite elements
[12,23,3,22], in flat plate finite elements [29,4,13,34,1] where a very
good approximation to the in-plane displacements has been reported,
in shell finite elements with linear kinematics [33] and with large
displacements and small strains [8]. The piece-wise constant trans-
verse shear stresses, calculated directly from the computed strains and
the constitutive relations for each layer, show frequently a poor
approximation. An accurate evaluation of shear stresses requires the
through-the-thickness integration of the in-plane equilibrium equa-
tions, which involves ad hoc schemes for the computation of the
derivatives of the in-plane stresses between finite elements. To avoid
the a posteriori integration of the equilibrium conditions and to

improve the predicting capabilities of the RZT, a mixed approach has
been developed for beams with linear kinematics [28]. Based on the
latter a so denoted RZTm

(3,2) has been developed for beams [15], where
the mixed approach is combined with improvements in both the in-
plane and transverse displacements interpolation. Smeared quadratic
and cubic terms are added to the piece-wise linear zigzag interpolation
that partially meets the stress boundary conditions at external surfaces
while a quadratic interpolation of the transverse displacement is
included. An extension to flat plates of the mixed approach, considering
two separate states of cylindrical bending, has been presented in [14].
Such mixed approach is not yet available for general double-curved
shells.

In this paper a general formulation for the mechanical analysis of
composite laminated structures is proposed. The model employs solid-
shell finite elements with large displacements and considers different
transverse shear strains approximations in a unified way. The elements
considered are a tri-linear 8-node hexahedron [9] and a 6-node
triangular prism [7] in which two refined zigzag approaches (RZT),
and a HOT (TSDT) are implemented. To attain this purpose the TSDT
kinematic is modified and suited to work with FSDT-shell and solid-
shell finite elements. In addition, this modification allows to unify the
general formulation presented in this paper. The scope of this work is
restricted to small elastic strains but large displacements and rotations.

An outline of this paper is as follows. Next section provides a short
description of the formulation of the solid-shell elements considered.
Then the additional displacement fields and the associated strains are
introduced. Resulting elasticity matrices for the new generalized stress
and strain measures are then evaluated. Several examples are pre-
sented in Section 5 to show the very good correlation with theoretical
results, with shell models and with 3D solid discretizations. Finally
some conclusions are summarized.

2. Solid-shell elements

Two prismatic solid-shell elements are considered, namely a
triangular (NN=6) and a quadrilateral (NN=8) based one. The original
and deformed geometries of the element are described by the standard
isoparametric approximations [36].

∑ ∑ξ ξ ξN Nx x X u( ) = ( ) = ( ) ( + )
I
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=1 =1 (1)

where XI , xI and uI are the original coordinates, the present coordinates
and the displacements of node I respectively. The shape functions ξN ( )I

are the usual Lagrangian interpolation functions in terms of the local
coordinates ξ ξ η ζ= ( , , ) of the corresponding master element
(ξ ξ η ζ= ( , , )I I I I are the coordinates of node I of the master element
in the parametric space, see Fig. 1)

• for the 8-node brick element

ξN ξξ ηη ζζ( ) = 1
8
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• for the 6-node prism element the in-plane interpolation uses area
coordinates ξ ξ ξ ξ η ξ η( , , ) = ( , , 1 − − )1 2 3 instead

ξN ζ ξ I( ) = 1
2

(1 − ) = 1 .. 3I
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ξN ζ ξ I( ) = 1
2

(1 + ) = 4 .. 6I
I−3 (4)

Following a standard approach, at each point of interest the
Cartesian derivatives are computed using the Jacobian matrix
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