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a b s t r a c t

General 2D boundary value problems of piezoelectric nano-sized structures with cracks
under a thermal load are analyzed by the finite element method (FEM). The size-effect phe-
nomenon observed in nano-sized structures is described by the strain-gradient effect. The
strain gradients are considered in the constitutive equations for electric displacement and
the high-order stress tensor. For this model, the governing equations and the correspond-
ing boundary conditions are derived using the variational principle. Uncoupled thermoe-
lasticity is considered; thus, the heat conduction problem is analyzed independently of
the mechanical fields in the first step. The veracity of the derived formulations and their
implementation into the finite element scheme is demonstrated by some numerical
examples.
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1. Introduction

The advent of nanotechnology has resulted in the development and production of small microelectronic components and
devices for various engineering applications. The classical electromechanical coupling theory of piezoelectricity fails to
describe the size-dependent phenomenon observed experimentally (e.g., [43,4–7,17,30,51]), when the dimensions of the
structure are of the same order of magnitude as the material length scale. Classical continuum mechanics neglects the inter-
action of material microstructure and the results from it are size-independent. Experimental techniques as well as discrete
atomistic methods such as molecular dynamics (MD) simulations can be utilized for the analysis of nano-sized structures.
However, the cost of using these methods can be quite prohibitive. An appropriate but less expensive approach can be
employed provided it is sufficiently reliable. In this regard, a promising strategy is to adopt an advanced continuummechan-
ics model which can account for the size effect phenomenon, where the strain gradients are included in the constitutive
equations. If the dielectric polarization is dependent on the strain gradient or curvature strain, it is referred in the literature
as the flexoelectric effect [23,32,40]. In the theory of elastic dielectric with electric quadrupoles, the electric field gradients
are considered in the constitutive equations [8,21,31]. Later, Hu and Shen [18] applied a variational principle to derive the
governing equations in a theory for nano-sized elastic dielectrics with the electric field-gradient and strain gradients. The
surface effect for nano-sized dielectrics is also considered in their formulation [41]. The constitutive equations as given
by Hu and Shen [18] for a pure electro-mechanical case are modified in the present work for thermo-piezoelectricity. This
involves providing the thermal term from the Duhamel-Neuman constitutive equation for the stresses.
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Gradient elasticity theory appears to be also suited for modeling macro-sized structures if the strain gradients are rela-
tively large. For crack problems, it has also been noted that there is a substantial increase of the stress singularity at the
crack-tip when the couple-stresses are considered [29,38]. Numerous studies have been reported in the literature to deter-
mine the stress and strain fields near the crack-tip under modes I, II and III load conditions in plane strain or anti-plane
deformation in the framework of the gradient theory of elasticity (see, e.g., [2,9–11,13,20,25,42,47]). Huang et al. [19] have
also derived the expressions for the near-tip fields for a crack in elastic or elastic-plastic materials with strain-gradient
effects under mixed mode loadings. A problem which involves the strain gradients is, in general, relatively complex and a
reliable computational tool is required to obtain accurate solutions. To this end, Karlis et al. [22] has developed a boundary
element method for the 2D fracture mechanics analysis of gradient elastic solids under static loading.

The theory of thermo-piezoelectricity in macro-sized structures was first proposed by Mindlin [33,34]. The physical laws
for thermo-piezoelectric materials were also explored by Nowacki [35]. Piezoelectric materials are brittle; therefore, it is
important to understand the fracture and damage behaviors of a cracked piezoelectric solid under coupled thermal, mechan-
ical and electrical loads [49,50]. A book on fracture of thermo-piezoelectric materials has also been written by Qin [37].
Boundary value problems for coupled fields are very complex indeed, and analytical solutions are available only for simple
geometries and boundary conditions [39]. For solving a general boundary value problem of a piezoelectric medium, the finite
element method (FEM) has been shown to be an effective technique [15,24] to employ. The meshless Petrov-Galerkin
method has also been developed for treating cracks in piezoelectric solids under a thermal load by Sladek et al. [44]. There
is, however, paucity of reported works on problems of thermo-piezoelectricity of nano-sized structures in the literature. This
is due to the computational difficulties involved. To the best of the authors’ knowledge, there are only papers in which non-
local thermo-piezoelectricity is applied to beams or plates [1,3,28].

In this study, the gradient theory for thermo-piezoelectricity is developed which can account for the size-dependent
behavior of in-plane cracks in nano-sized piezoelectric structures under a thermal load. A physically similar, but simpler,
problem has been analyzed very recently by the authors for nano-sized cracks in piezoelectric solid [46]. Only coupling of
mechanical and electrical fields was considered in that work. In the present study, a thermal field is added to the load con-
ditions. A successful attempt to this end has not been reported previously, as far as the authors are aware. Uncoupled ther-
moelasticity is considered in which the heat conduction problem is analyzed independently of the mechanical fields in the
first step. The size-effect phenomenon in nano-sized structures is described by the strain-gradients in the constitutive equa-
tions of a piezoelectric material. The governing equations with the corresponding boundary conditions are derived from the
variational principle. With these equations, the FEM formulation is then developed. Some numerical examples are presented
and discussed to demonstrate the veracity of the computational scheme developed.

2. Basic equations for electric-strain gradient theory in thermoelasticity

Consider the electric field-strain gradient coupling and pure nonlocal elastic effect under a thermal load of a nano-
dielectric material. The constitutive equations given by Hu and Shen [18] for a pure electro-mechanical case have to be aug-
mented by the thermal term from the Duhamel-Neuman constitutive equation for stresses

rij ¼ cijklekl � ekijEk � cijh;
sjkl ¼ �f ijklEi þ gjklmnige

nmi;

Dk ¼ aklEl þ ekijeij þ f klmnglmn;

ð1Þ

and the Fourier law for the heat flux vector

ki ¼ �kijh;j; ð2Þ
where the temperature differences are denoted by h ¼ T � T0 with the reference temperature T0 at which the thermal strains
are zero, i.e. eTij ¼ 0: Also, the stress–temperature modulus can be expressed through the stiffness coefficients and the coef-
ficients of linear thermal expansion bkl

cij ¼ cijklbkl: ð3Þ
The other coefficients in (1), namely, a, c, e, f and g are the material property tensors. Symbols a and c are used for the

second-order permittivity and the fourth-order elastic constant tensors, respectively. The symbol e denotes the piezoelectric
coefficient and f is the electric field-strain gradient coupling coefficient tensors representing the higher-order electrome-
chanical coupling induced by the strain gradient. The tensor g denotes the purely nonlocal elastic effects, i.e., the strain-
gradient elasticity. The symbols sijk and Di represent the higher-order stress and electric displacement components,
respectively.

The strain tensor eij and the electric field vector Ej are related to the displacements ui and the electric potential / by

eij ¼ 1
2
ðui;j þ uj;iÞ; Ej ¼ �/;j; ð4Þ

where the latter assumption is justified when the quasi-static approximation for electromagnetic fields is applicable.
When the macroscopic strain coincides with the micro-deformation [10], the strain-gradient tensor g is defined as
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