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Abstract

Concepts from Finsler differential geometry are applied towards a theory of deformable continua with internal struc-
ture. The general theory accounts for finite deformation, nonlinear elasticity, and various kinds of structural features
in a solid body. The general kinematic structure of the theory includes macroscopic and microscopic displacement
fields–i.e., a multiscale representation– whereby the latter are represented mathematically by the director vector of
pseudo-Finsler space, not necessarily of unit magnitude. A physically appropriate fundamental (metric) tensor is
introduced, leading to affine and nonlinear connections. A deformation gradient tensor is defined via differentiation
of the macroscopic motion field, and another metric indicative of strain in the body is a function of this gradient.
A total energy functional of strain, referential microscopic coordinates, and horizontal covariant derivatives of the
latter is introduced. Variational methods are applied to derive Euler-Lagrange equations and Neumann boundary con-
ditions. The theory is shown to encompass existing continuum physics models such as micromorphic, micropolar,
strain gradient, phase field, and conventional nonlinear elasticity models, and it can reduce to such models when
certain assumptions on geometry, kinematics, and energy functionals are imposed. The theory is applied to analyze
two physical problems in crystalline solids: shear localization/fracture in a two-dimensional body and cavitation in a
spherical body. In these examples, a conformal or Weyl-type transformation of the fundamental tensor enables a de-
scription of dilatation associated, respectively, with cleavage surface roughness and nucleation of voids or vacancies.
For the shear localization problem, the Finsler theory is able to accurately reproduce the surface energy of Griffith’s
fracture mechanics, and it predicts dilatation-induced toughening as observed in experiments on brittle crystals. For
the cavitation problem, the Finsler theory is able to accurately reproduce the vacancy formation energy at a nanoscale
resolution, and various solutions describe localized cavitation at the core of the body and/or distributed dilatation
and softening associated with amorphization as observed in atomic simulations, with relative stability of solutions
depending on the regularization length.
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1. Introduction

In Finsler geometry, each point on the base manifold can be envisioned as endowed with a vector of coordinates
denoting its position from the origin and a director vector, also referred to herein as an internal state vector, whose
components may or may not explicitly depend on position coordinates. Geometric objects such as metric tensors,
connections, and derived quantities–e.g., torsion, curvature, and so forth–may in turn depend on both position and
direction or internal state. This generality is in contrast to classical Riemannian geometry, wherein ultimate depen-
dence of such geometric objects is on position alone. Finsler geometry encompasses certain geometries of Riemann,
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