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a b s t r a c t

In this paper, a unified formulation which is based on a general refined shear deformation beam theory is
presented to conduct free vibration analysis of composite laminated beams subjected to general
boundary conditions. In the refined theory model, the displacement fields are chosen by including the
high-order variation of transverse shear strain through the thickness of the beam and meeting the stress-
free boundary conditions on both the top and bottom surfaces. With considering the material couplings
and the Poisson's effect, the governing equations and appropriate boundary conditions are derived from
the Hamilton's principle. Exact solutions are obtained by employing the method of reverberation ray
matrix (MRRM). In order to implement general boundary conditions, the artificial spring boundary
technique is introduced in the MRRM to make it suitable for different boundary cases. The present so-
lutions are compared with those available in the literature to confirm their validity. A systematic
parameter study for composite beams with various boundary conditions, fiber orientations, lamina
numbers and orthotropic ratios is also performed. New results for free vibration involving composite
laminated beams with various boundary constraints are also presented for the first time and they may be
served as benchmark for researchers in this field.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the attractive properties in strength, stiffness and light-
ness, composite laminated structures are widely used in many
engineering applications such as aircraft structures, space vehicles,
turbo-machines, sports and other industrial applications as the
fundamental structural elements. In these applications, one or
more beam components are contained in almost every engineering
structure. Besides, many structures can be modeled at a pre-
liminary level as beams. It is known that the composite laminated
beams are often applied in complex environments and subjected to
various dynamic loads, the structures may fail and collapse because
of material fatigue resulting from violent vibrations. Therefore, it's
of increasing importance to have a thorough understanding of the
structural vibrations and reduce them through proper design to
improve the performance of composite laminated beams and take
full advantage of them.

To obtain reliable and accurate results of the vibration char-
acteristics for composite laminated beams, various beam theories
have been proposed in the past few years. In the early stage, the
classical beam theory (CBT) referred to as Euler-Bernoulli beam
theory has been employed to predict the vibration behavior of
slender laminated beams [1]. For moderately thick beams, the CBT
underestimates deflection and overestimates natural frequency
because it ignores the transverse shear deformation effect [2,3]. As
a remedial measure, the CBT has been modified by taking the
transverse shear deformation into consideration in beam bending,
which results in the so-called first-order shear deformation beam
theory (FBT). Since the FBT violates the stress-free boundary
conditions on the top and bottom surfaces, a shear correction
factor is needed to weaken the discrepancy between the assumed
constant stress state and the actual one [2e5]. As has already been
demonstrated, the shear correction factor has a noticeable influ-
ence on the accuracy of the FBT solutions. To eliminate the defi-
ciency of the CBT and FBT, the higher order shear deformation
beam theory (HBT) without the use of the shear correction factor
has been developed, and it includes the higher order variation of
axial displacement or both axial and transverse displacements
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along the thickness of the beam. Regarding the higher-order shear
deformation theory, a number of models with different shear
strain shape functions have been proposed. A brief assessment of
several higher-order shear deformation theories can be found in
the work of Wu and Chen [6]. Reddy [7] developed a third-order
shear deformation theory accounting for parabolic distribution
of the transverse shear strains through the thickness, and the
exact closed-form solutions of symmetric cross-ply laminated
plate were obtained by using the Navier approach. Touratier [8]
presented a higher-order shear deformation plate theory for the
bending, free vibration and buckling analyses of simply-supported
composite plates and shallow shells, where the distribution of
transverse shear was represented by a certain sinusoidal function.
Soldatos [9] proposed a general two-dimensional theory for the
transverse shear deformable plate, which accounted for an un-
limited number of choices of through-thickness displacement
distributions. Karama et al. [10] presented a multi-layer laminated
composite structure model by using the exponential function to
predict the mechanical behavior of composite structures. In
addition, several refined higher-order shear deformation theories
have been proposed by various author [11e17], where the so-
called stretching effect is taken into consideration. Generally,
these higher-order shear deformation theories involve higher-
order stress resultants that are difficult to interpret physically
and require considerably more computational effort. Therefore,
such theories should be used only when necessary and there re-
mains scope to develop an accurate theory which is simple to use.
Recently, another refined higher-order shear deformation theories
involving only four unknowns has been presented by Tounsi and
his co-authors [18e24]. This theory model is based on the
assumption that the in-plane and transverse displacements
consist of bending and shear components in which the bending
components have no contribution to shear forces and the shear
components do not contribute toward bending moments. Mean-
while, the bending component of in-plane displacement is similar
to that given by the classical plate theory (CPT), and the shear
component gives rise to the higher-order variation of shear strains
across the thickness. In such a way, shear stresses can be vanished
on the top and bottom surfaces. Although the high-order shear
deformation theories were initially developed for plates or shells,
application of these theories to composite laminated beam is
immediate. For example, Vo and Thai [25e31] presented various
refined higher-order shear deformation beam theories and these
beam models were found to be appropriate and efficient in
investigating the static and dynamic properties of composite
laminated and functionally graded beams. However, the estab-
lishments of unified and exact solutions of refined higher-order
shear deformation beam theories for predicting the vibration
behavior of composite laminated beams with general boundary
conditions remains a challenging task and is the focus of the
present study. The Carrera Unified Formulation (CUF) permits one
to develop a large number of beam theories with a variable
number of displacement unknowns by means of a concise nota-
tion and by referring to a few fundamental nuclei [32e36]. The
refined higher-order beam theories can be easily implemented on
the basis of the CUF, and the accuracy of a large variety of beam
theories can be established in a hierarchical and/or axiomatic vs.
asymptotic sense.

In addition to the aforementioned beam theories, a great
quantity of analytical and computational methods have also been
developed to conduct the free vibration analysis of laminated
beams, such as the meshless method [37e39], the closed-form
solution [40e43], transfer matrix method [44,45], dynamic

stiffness method [46e48], differential quadrature method
[49e52], and finite element method [53e57]. From the review, it
can be clear revealed that the available study for free vibration
behavior of composite laminated beams is far from complete. It
appears that most of the existing solution methods are often only
customized for a specific set of classical boundary conditions and
this typically requires constant modifications of the solution
procedures to be applicable to different boundary cases, which
will result in very tedious calculations. On the topic of general
boundary conditions, only the variational method [58e61] has
been provided. Recently, a frequency-domain analysis technique
named the method of reverberation ray matrix (MRRM) was
presented by Pao [62] and Howard [63]. Due to its favorable
adaptability, the MRRM has been applied in many composite
structures for handling the dynamic problem [64e72]. However,
as far as the authors know, there is no study available on vibration
analysis of composite laminated beams with general boundary
conditions by using the MRRM.

Motivated by the limitations in the research background, this
paper aims to present a unified formulation to conduct the free
vibration analysis of general refined higher-order shear defor-
mation composite laminated beams with arbitrary lamination
schemes and general boundary conditions. In the refined theory
model, the axial and transverse displacements are composed of
bending and shear components inwhich the bending components
have no contribution to shear forces and the shear components do
not contribute toward bending moments. Meanwhile, the shear
component of axial displacement generates the higher-order
variation of shear strain and hence shear stress through the
depth of the beam in such a way that the shear stress vanishes on
the top and bottom surfaces. With considering the elastic cou-
plings coming from the material anisotropy and the Poisson's ef-
fect, the three governing equations and appropriate boundary
conditions are deduced by applying the Hamilton's principle. The
general boundary condition of the end of the beam is imple-
mented by introducing three groups of linear springs and two
groups of rotational ones. Accordingly, the MRRM is redefined to
obtain exact solutions for different boundary cases. The accuracy
of a variety of refined higher-order shear deformation beam the-
ories to predict vibration behaviors of laminated beams is inves-
tigated. The effects of the elastic restraint parameters, layout
schemes, lamina number and material anisotropy are also studied
and reported.

2. Theoretical formulations

2.1. Description of the model

Consider a composite laminated beam of length Lx, width Ly and
thickness h, as illustrated in Fig.1. A Cartesian coordinate system (o-
xyz) with the coordinates x along the central axis, y along the width
direction and z along the thickness direction is used to describe the
wave propagation in the beam. Thus, the deformations of the
laminated beam are characterized by its center axis and take place
in the x-z plane. At the two ends x ¼ 0 and x ¼ Lx, the general re-
straint condition is achieved by setting up three groups of trans-
lational springs (ku0

0;Lx
, kwb

0;Lx
and kws

0;Lx
) and two groups of rotational

springs (Kfb
0;Lx

and Kfs
0;Lx

). These springs are continuously distributed
along the width. By assigning the boundary springs with various
stiffness values, different boundary forces can be simulated to be
imposed on the ends of the beam [58e61,71,72]. In general, the
beam is made up of some or many laminate layers; each consists of
unidirectional orthotropic materials in arbitrary orientations with
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