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A B S T R A C T

Length scale based continuum mechanics can account for size dependence - a feature absent in classical theory
that is becoming increasingly important in analyzing behavior of matter in micro- and nano-technology.
Starting from a foundational mechanics and thermodynamics perspective, recent work has provided a self-
consistent formulation to resolve certain issues associated with previous couple stress theory. In the current
paper, a penalty-based finite element framework is developed to enable solution of general problems for linear
elastic isotropic materials under plane strain conditions within this consistent couple stress theory (C-CST). The
penalty parameter is incorporated in the formulation to satisfy continuity requirements, while allowing
convergence of the method with only C0 elements. The efficacy of the finite element analysis is verified by
studying three example problems for which closed form solutions are known. Furthermore, a fourth example
problem for which a closed form solution is unknown is solved numerically to bring out nontrivial features of
couple stress theory. The main objective of this work is to demonstrate that a simple finite element analysis-
based framework can be effective in exploring the interesting features of C-CST. Additionally, detailed finite
element analysis results provided in this work can be used to benchmark future computational development for
size-dependent mechanics theory.

1. Introduction

Classical solid mechanics is based upon length-scale independent
measures of deformation, namely, the strain tensor. However, as
current technology is evolving towards smaller length scales, one finds
that the response is often size-dependent. Consequently, there is a need
to develop size-dependent continuum mechanics theory and the
corresponding computational mechanics formulations to extend the
reach of continuum mechanics and associated tools to describe the
material behavior in very small length-scales. One approach for this
extension is to revisit the Cauchy assumption that restricts tractions on
the surfaces of an elemental continuum volume to those caused
exclusively by force-stresses. Instead, as proposed by Voigt [1],
couple-stresses can be envisioned as well, along with the corresponding
couple-tractions. These theories allow for the existence of couple-
stresses that have the dimension of couple (moment) per unit area in
addition to the traditional force-stresses. As a consequence, the force-
stress tensor is no longer symmetric and the theory allows for material
constitutive parameters, which have length-scale dependence. When
these characteristic length parameters become insignificant relative to
the critical dimensions of the physical problem, the results based on
couple stress theory converge to those of the classical continuum
theory.

The formulation of such length-scale dependent theories, whose
origins go back to the Cosserats [2], has remained a challenge due to
some inherent inconsistencies, including the indeterminacy of the
couple-stress and force-stress tensors in the initial versions of Couple
Stress Theory [3,4]. These unresolved issues have, in turn, encouraged
the development of several different size-dependent theories, such as
Strain Gradient [5,6] and Micro-Polar theory [7]. These size-dependent
formulations are more complicated than the classical theory and closed
form solutions have only been possible for a very few select problems in
the indeterminate theory [8,9]. However, recent work [10] has
contributed new perspectives to resolve the indeterminacy issues in
the original Couple Stress Theory. Reference [11] provides the theore-
tical background for any continuum by using fundamental laws,
including the first law of thermodynamics or energy balance equation.
In the development of this Consistent Couple Stress Theory (C-CST),
the four foundational quantities in mechanics (i.e., force, displacement,
couple, rotation) are at the heart of the theory and all individual terms
in virtual work, as well as the essential and natural boundary condi-
tions, have clear physical meaning [12]. It also is significant to notice
that rigid body mechanics is a special case of C-CST, thus further
demonstrating the inner consistency. By analyzing the kinematics of
the problem and invoking the fundamental continuum hypothesis, a
differential volume is envisioned to resist not only stretches, but also
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bending deformation. This leads to the energy conjugate pair, consist-
ing of the skew-symmetric mean curvature and couple-stress tensors
that need to be accounted for in the energetics. Therefore, the potential
energy density for an elastic solid due to isothermal mechanical
deformation (henceforth, referred to as elastic energy density) de-
pends, not only on the strain tensor, but also the mean curvature tensor
that is defined as the skew-symmetric part of the gradient of the
rotation vector. Interestingly, the couple-stress and mean curvature
tensors are pseudo (axial) tensors, while their corresponding duals are
represented by true (polar) vectors.

This fully determinate size-dependent continuum theory forms the
foundation for the penalty-based finite element analysis (FEA) frame-
work proposed in the current work. The penalty FEA framework is
validated for four representative problems in plane strain C-CST using
either closed-form solutions or existing converged solutions from other
numerical methods, when closed-form solutions are unavailable. The
utility of the current work can be understood with the following
example. With multiple theories already existing in the size-dependent
polar continuum mechanics literature [4–7], the emergence of C-CST
has created a debate in the research community [13–18]. In this
context, the present penalty FEA framework can serve mechanics
researchers and engineers seeking a better understanding of C-CST
via numerical simulations within the scope of their problems of
interest. Furthermore, the numerical results provided here can also
serve to benchmark new development on the computational mechanics
front for size-dependent theories.

A pure displacement-based FEA implementation of Couple Stress
Theory would require the continuity of the angular displacement (or
rotation) over the problem domain, hence a C1 continuity on the
displacement field is desired. Such C1 elements based on Hermite
shape functions have been developed for both 2-dimensional [19] and
3-dimensional [20] boundary value problems. Owing to the challenges
in the developing C1 continuous basis functions, a more popular
approach is to use shape functions with less restrictive regularity
conditions imposed and enforce the desired continuity on the higher
derivatives in a weak sense. In this context, some common approaches
include Discontinuous Galerkin (DG), Continuous/Discontinuous
Galerkin (C/DG), Hybrid and Mixed Finite Element Methods.

In the DG approach, the approximations for the solution field are not
continuous across elements and the inter-element continuity in the
solution field and higher order derivatives are weakly imposed via
penalizing the jumps of these functions and their derivatives across the
element boundaries using stabilization parameters [21]. This approach

has been analyzed [22] and demonstrated for strain gradient-dependent
damage problems [23]. In the C/DG approach, the DG approach is
modified to include C0 continuous solution fields and penalize the jumps
in the higher order derivatives using stabilizing parameters. The C/DG
does not require the assumption of an independent higher order gradient
field. The C/DG theory has been analyzed and demonstrated [24,25] in
higher order theories for Toupin-Mindlin shear layer [26,27] and
nanocrystalline microstructures with internal grain boundaries [28]. An
interesting feature of the C/DG approach [25] is that it can respect the
discontinuity in the higher order derivatives of the solution field at the
material grain interfaces and junctions, which is a physically permissible
phenomenon as per the fundamental model [28], while simultaneously
trying to reduce the discontinuity in the solution field at the grain
interfaces or its derivatives at the internal edges of the finite elements
stemming from the numerical approximation using C0 basis functions.

Mixed and Hybrid Finite Element Methods can be categorized
under multi-field variational formulations [29]. A hybrid finite element
is characterized by additional variables that are defined on the interior
element edges, whereas in the mixed finite element method multiple
fields are defined on a finite element [30]. In both these classes of
problems, a Lagrange multiplier method is commonly used to convert
the constrained minimization problem to a saddle-point problem.
Problems in Strain Gradient Theory based elasticity and plasticity have
been solved via C0 continuous elements by using Lagrange multipliers
to weakly impose the C1 continuity [31–33]. In addition, FE methods
have been developed for planar problems, based on the indeterminate
Couple Stress Theory, using mixed finite element formulations [34,35].
In recent work, a Lagrange multiplier finite element method has been
developed for problems in isotropic elastostatics in C-CST [36]. A finite
element method, where additional non-conforming displacement fields
are defined in addition to a C0 continuous displacement field, have also
been shown to weakly enforce inter-element continuity for indetermi-
nate Couple Stress Theory [37]. Another technique that can be
classified as a Mixed element method is that of the penalty-based finite
element. The penalty method can be advantageous when the indefi-
niteness of the system matrix associated with a Lagrange multiplier-
based mixed formulation is undesired or when elements with lower
number of degrees of freedom are desired. Here a positive definite
function of constraint violation, scaled by a penalty term, can be
appended to the potential energy function that will be minimized [38].
Weak C1 continuity has been shown to be imposed by penalizing the
continuity constraint violation for the indeterminate Couple Stress
Theory [39,40]. The basic principles of penalty-based FEA can be found

Nomenclature

σji Force-stress tensor
μji Couple-stress tensor
μi Couple-stress vector
Fi Body force per unit volume
εijk Levi-Civita symbol
nj Unit vector of surface normal
ti

n( ) Force-traction vector on the surface whose unit vector is nj

mi
n( ) Couple-traction vector on the surface whose unit vector is

nj
ui Linear displacement vector
eij Strain tensor (symmetric)
ωij Angular displacement (or rotation) tensor (skew-sym-

metric)
ωi Rotation vector
χij Torsion tensor
κij Mean curvature tensor
κi Mean curvature vector
Aijkl Constitutive tensor relating symmetric part of force-stress

tensor to strain tensor
Bij Constitutive tensor relating couple-stress vector to mean

curvature vector
Cijk Constitutive tensor relating couple-stress vector or the

symmetric part of force-stress tensor to strain tensor and
mean curvature vector

δij Kronecker delta
λ Lamé’s first parameter
G Lamé’s second parameter or shear modulus
ν Poisson’s ratio
η Modulus for isotropic Couple Stress Theory
l Length scale parameter
E Young’s modulus
ETOT Total strain energy
ECL Strain energy contribution due to force-stress
ECS Energy contribution due to couple-stress
EP Energy contribution due to penalty parameter
P Penalty parameter
∅ Null Set
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