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a b s t r a c t 

A beam problem is though classical but not theoretically settled down at present. Different from the previous work, 

the current study starts with defining the generalized displacements. Together with the assumptions and the shear 

stress free condition, the axial displacement is first mathematically expanded in two terms and then decomposed 

into an orthogonal form in terms of the generalized displacements. The generalized stresses are accordingly 

defined, and the uncoupled constitutive relations are derived for beam problems after the generalized strains 

are properly measured. The principle of virtual work is proposed and the variationally consistent higher-order 

beam theory is eventually established, which can reduce to the variationally asymptotic lower-order beam theory. 

With these fundamentals, the finite element method is finally formulated as easy as for a three-dimensional elastic 

problem, and applied to typical problems. The results show that the higher-order beam element can capture the 

effect of the clamped end and the load jump via smoothly modeling the warping of cross section by using a locally 

refined mesh while accurately modeling the deflection. With the current framework, modern beam structures 

accounting for the effect of nonlocal elasticity, small scales and material heterogeneities can be readily solved. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Beam problems are classical in the mechanics field, but still of great 

importance in modern scientific researches and engineering applica- 

tions. For example, the laminate beams [1] , the functionally graded ma- 

terial beams [2] , the piezoelectric beams [3] , the shape memory alloy 

beams [4] , and the beams considering nonlocal elasticity [5] , gradient 

elasticity [6] and couple stresses [7] , or small-sized beams with small 

scale effects [8] have been widely studied in recent years. As the fun- 

damental outcome, massive research developments have been reported 

since the advent of Euler–Bernoulli beam theory (EBT) [9] . However, 

some issues are still pending for beam problems. 

The first issue is the concept of generalized displacement. As we 

know, for a three-dimensional elastic problem, the displacement vector 

is essential, based on which strains are measured. However, the gener- 

alized displacement is not definitely defined [10] for beam problems. It 

is no doubt that, as a flexible structure, the deflection is certainly the 

primary displacement, but how to define deflection pertaining to the 

vertical displacement (i.e. v(x, y) for a plane problem) is controversial. 

It turns out that the deflection is mostly defined as vertical displacement 

at the neutral line [11,12] while sometimes defined as the average of 
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vertical displacement over the cross section [13] . Owing to the assump- 

tion that the lateral normal strain vanishes for a beam problem, the 

two definitions are in effect identical, and hence this issue appears to 

be trivial. The other generalized displacement in beam problems is the 

rotation of cross section, which plays an indispensable role either for 

shear deformable theory or for the classical theory. The fact is that the 

beam theories can be studied in a unified way if enough attention is 

paid to this concept. In previous researches, the rotation is mostly de- 

fined as the one at the neutral line [11,12] while sometimes defined as 

the average over the cross section [13,14] , even others [15,16] . Unlike 

the deflection, various rotations have different physical meanings, giv- 

ing rise to different constraints at the clamped end [12,14] . In addition, 

to establish a perfect beam theory, it is hopeful to conceptually conform 

the generalized displacements with the generalized stresses. 

The second issue is about generalized stress. It has been well known 

that moment and shear force are the two generalized stresses in beam 

theories, as well as in the theory of strength of materials, correspond- 

ing to rotation and deflection as their generalized displacements. How- 

ever, the situation changes for the beam theories with a higher-order 

mode of axial displacements. Although many researchers tried to de- 

fine the higher-order generalized stresses [17] , they are by no means 

the “moment ” or “shear force ” from the dimensional viewpoint. Particu- 
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larly, those defined higher-order stresses [17] are really not higher-order 

(small) quantities which can be ignored when deriving the lower-order 

beam theory. 

The third issue is about generalized strain. As we know, the general- 

ized strains measured by the generalized displacements should be work 

conjugated with the generalized stresses. So, this issue is closely corre- 

lated with the first two issues. Unfortunately, due to the inadequacy of 

this issue, some confusions appear even in the recent researches [18] . 

This is just our motivation to re-evaluate the beam theories. 

Were the three issues well settled, the beam theory could be system- 

atically studied, leading to the governing ordinary differential equations 

(higher-order or lower-order) and corresponding boundary conditions, 

as well as the finite element formulations. 

However, the researches on higher-order beam theories are not along 

this guideline, which can be viewed from the corresponding finite ele- 

ment implementation. As early as in 1988, Heyliger and Reddy [19] pro- 

posed a higher-order beam finite element for bending and vibration 

problems. Because this element was so devised as to follow their the- 

oretical work (e.g. see [17] ) in which the constitutive relations were 

not established for beam problems, the stiffness matrix was obtained 

block by block in a tedious way. Eisenberger [20] proposed an exact 

higher-order beam element in which the terms in the stiffness matrix 

were the holding actions at the end of the beam element in the higher- 

order beam theory when the beam was so deformed that the desired de- 

gree of freedom (DOF) was unity while all other DOFs were restrained. 

Without use of shape functions for the element, this is however not a 

general and acceptable practice for the finite element method. Murthy 

et al. [21] proposed a refined higher-order finite element and then ap- 

plied it to asymmetric composite beams in which the shape functions 

were exactly derived by satisfying the governing equations of higher- 

order beam theory, and the stiffness was expressed in a matrix form. 

However, it appears troublesome when obtaining the shape functions 

and the strain-displacement matrix. Although these exact or refined el- 

ements are very successful for lower-order beam theories such as the 

Timoshenko beam theory (TBT) [22–24] , they are not appropriate for 

higher-order beam theories, especially when extended to plate problems 

which are governed by partial differential equations. 

In this paper, a mechanics manner is proposed to study beam 

problems by replacing the previous engineering manner. That is, a 

beam problem is completely stated as the approximation of a three- 

dimensional or two-dimensional elastic problem with some assumptions 

and under some conditions. To this end, the paper is outlined as fol- 

lows. In Section 2 , the fundamental of a beam problem is briefly sum- 

marized, including the problem description, the kinematics, the concept 

of generalized stresses and strains, and the principle of virtual work. In 

Section 3 , the higher-order beam theory is first derived, including the 

equilibrium equations and boundary conditions, and governing ordinary 

differential equations, and then reduces to the lower-order beam theory. 

In Section 4 , the finite element method for beam problems is formulated 

for the present higher-order beam theory. Typical examples are numer- 

ically solved and then discussed in Section 5 to validate the proposed 

higher-order beam element. The concluding remarks are finally given in 

Section 6 . 

2. Fundamentals 

2.1. Description of a beam problem in the manner of plane elasticity 

For the explanation reason, our focus is on a straight beam with 

rectangular cross section. As shown in Fig. 1 , the beam structure with 

unit width is located in x-y plane with thickness h and length L. As a 

plane stress problem, the elasticity theory is to solve the displacement 

field (u, v) varying with field point (x, y). In contrast, the corresponding 

beam theory is to solve the deflection w varying with length coordinate 

x. 

Fig. 1. A beam structure with rectangular section. 

In the manner of beam, due to the small thickness-to-length ratio 

(i.e. h/L), the following two assumptions are often adopted. 

Assumption 1. The lateral normal strain 𝜀 y vanishes identically, i.e. 

𝜀 y = 0 (1) 

which implies that 

𝜕𝑣 ( 𝑥, 𝑦 ) 
𝜕𝑦 

= 0 (2) 

Assumption 2. The stress components for a plane problem satisfy 

[25] 

σy ≪ τxy ≪ σx (3) 

where 𝜎x , 𝜎y and 𝜏xy are, respectively, the longitudinal normal stress, 

lateral normal stress and the shear stress. 

Thus, ignoring 𝜎y , Hooke’s law yields { 

𝜎𝑥 = 𝐸 𝜀 𝑥 
𝜏𝑥𝑦 = 𝐺 𝛾𝑥𝑦 

(4) 

where E and G are, respectively, Young’s modulus and shear modulus. 

𝜀 x and 𝛾xy are, respectively, the longitudinal normal strain and shear 

strain with strain measures being { 

𝜀 𝑥 = 

𝜕𝑢 

𝜕𝑥 

𝛾𝑥𝑦 = 

𝜕𝑢 

𝜕𝑦 
+ 

𝜕𝑣 

𝜕𝑥 

(5) 

2.2. Kinematics of a beam 

According to the transverse displacement v(x, y), the deflection of 

beam is defined as 

𝑤 ( 𝑥 ) = ( 1∕ 𝐴 ) ∫𝐴 

𝑣 ( 𝑥, 𝑦 ) 𝑑𝐴 (6) 

where A is the area of cross section. Eq. (6) implies that the current 

deflection is in the average sense over the cross section. 

In engineering, the deflection w is mostly defined as 

𝑤 ( 𝑥 ) = 𝑣 ( 𝑥, 0 ) (7) 

With Eq. (1) , we also have 

𝑤 ( 𝑥 ) = 𝑣 ( 𝑥, 𝑦 ) = 𝑣 ( 𝑥, ℎ ∕2 ) (8) 

Considering Eq. (1) , the definition by Eq. (6) satisfies Eqs. (7) and 

(8) as well. Thus, with Assumption 1, the two definitions of deflection 

are in effect identical. 

According to axial displacement u(x, y), the rotation of cross section 

for a beam is defined also in the average sense over the cross section as 

𝜙( 𝑥 ) = ( 1∕ 𝐼 ) ∫𝐴 

𝑦𝑢 ( 𝑥, 𝑦 ) 𝑑𝐴 (9) 

where I , the second-order moment of inertia, is 

𝐼 = ∫𝐴 

𝑦 2 𝑑𝐴 (10) 

w in Eq. (6) and 𝜙 in Eq. (9) are called generalized displacements of 

beam. 
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