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a b s t r a c t

In this paper, we propose a general experimental design framework for optimally guiding new experi-
ments or simulations in search of new materials with desired properties. The method uses the knowledge
of previously completed experiments or simulations to recommend the next experiment which can effec-
tively reduce the pertinent model uncertainty affecting the materials properties. To illustrate the utility
of the proposed framework, we focus on a computational problem that utilizes time-dependent
Ginzburg-Landau (TDGL) theory for shape memory alloys to calculate the stress-strain profiles for a par-
ticular dopant at a given concentration. Our objective is to design materials with the lowest energy dis-
sipation at a specific temperature. The aim of experimental design is to suggest the best dopant and its
concentration for the next TDGL simulation. Our experimental design utilizes the mean objective cost of
uncertainty (MOCU), which is an objective-based uncertainty quantification scheme that measures
uncertainty based upon the increased operational cost it induces. We analyze the performance of the pro-
posed method and compare it with other experimental design approaches, namely random selection and
pure exploitation.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Materials Genome Initiative (MGI) in the U.S. [1] has cat-
alyzed much recent interest in accelerating materials discovery.
One of the outstanding challenges in materials science is to reduce
the number of costly and time-consuming trial and error experi-
ments required to find new materials with desired properties. This
is not a trivial problem because the materials search space is vast
due to the complex interplay of structural, chemical and
microstructural degrees of freedom and only a small fraction has
been experimentally investigated [2]. High-throughput efforts,
including high-throughput calculations and combinatorial experi-
ments, have largely been the approaches of choice to narrow the

combinatorial search space [3–5]. Recently, there has been much
interest in using data-driven machine learning tools for optimally
guiding experiments or calculations towards materials with
desired properties [2,6–16]. Such methods have met considerable
success in fields such as game theory, pattern recognition, artificial
intelligence, and event forecasting. However, the application of
pure data-driven approaches to materials science can be biased
and yield suboptimal results, as the available training data are
quite limited compared to the number of features (or material
descriptors) and size of the search space [17–19]. A distinct advan-
tage of materials science is that knowledge in the form of constitu-
tive or scaling relations and various constraint equations is often
available from theory or known empirically. Such prior knowledge
can be used in conjunction with data to quantify uncertainty and
construct operators that are optimal relative to that uncertainty.
Moreover, these operators on average outperform those designed
solely using data. The efficacy of this approach has been success-
fully demonstrated in the biological sciences. For instance, in geno-
mics there is a large body of knowledge regarding gene/protein
signaling pathways. This knowledge can be transformed in such a
way as to be useful for constructing biomarkers [20,21] and then
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incorporated into a Bayesian framework to design optimal classi-
fiers for decisions involving patient diagnosis, prognosis, and ther-
apy [22–25]. How these methods can be utilized to predict
properties and guide new experiments is therefore of significant
importance and has not been demonstrated in materials science.

Our focus in this work is on experimental design. Experimental
design has a long and varied history in science and engineering, the
reason being that a properly designed experimental procedure pro-
vides much greater efficiency than simply making random probes.
Indeed, Francis Bacon’s call for experimental design in the New
Organon in 1620 is often taken to be the beginning of modern
science. In particular, in biomedicine, where the processes are very
complex, one can gather a virtually limitless amount of informa-
tion without getting to the crux of the matter. In view of the large
number of measurements often needed in materials science, we
deal with this problem as a multi-dimensional optimization prob-
lem, which typically requires training data in order to be solved
[26,27]. Prior knowledge regarding parameters and features affect-
ing the desired properties of materials is also crucial. However, it is
often the case that prior knowledge is insufficient and the presence
of large uncertainties degrades the experimental design. Therefore,
one needs to improve the predictability of the model with respect
to the ultimate objective by making additional measurements,
which in turn requires synthesizing new materials. Therefore, it
is necessary to target experimental efforts where the material with
the desirable properties may be found by minimizing the number
of experiments. This can be done via experimental design that dis-
tinguishes between different experiments based upon information
they can provide.

In the present study, we demonstrate experimental design by
formulating a computational problem based on the time-
dependent Ginzburg-Landau (TDGL) theory for shape memory
alloys (SMAs) that has been shown to capture reasonably well
the underlying physics of the shape memory effect (SME) and
superelasticity (SE) [28]. SMAs are a subclass of martensitic struc-
tural phase transitions that display SME and SE. The SE effect arises
when an alloy above a certain temperature is deformed such that
on unloading it returns to the original strain state. They are impor-
tant because of their high tensile strength and ability to recover
[29–31]. When the high symmetry austenite structure is exposed
to stress beyond a critical value, it transitions to the low symmetry
martensite phase and when the stress is removed, the martensite
reverts back to the parent austenite phase [32]. Typically, such
first-order phase transitions are accompanied by large hysteresis
in the stress-strain curve, as shown in Fig. 1(a). Therefore, the
whole loading-unloading process results in a hysteresis stress-
strain loop. The closed area inside the curve is a measure of the
amount of energy dissipated during the stress-strain cycle. For
practical applications, large energy dissipation or hysteresis is

undesirable because it affects the fatigue properties of SMAs in
devices (such as cardiovascular stents) that require high sensitiv-
ity, precision, and durability. Therefore, lowering the energy dissi-
pation accompanying SE is critical for realizing SMAs in practical
applications and serves as our computational design target in this
work. More specifically, we integrate TDGL theory (which com-
putes the stress-strain curve for prototypical SMAs such as FePd)
with our experimental design to rapidly select the material-
specific model parameters that minimize the energy dissipation
associated with SE. In real experiments, chemical modification of
SMAs, for example by doping alloying elements in the host alloy,
can affect the shape of the stress-strain SE response and conse-
quently, the energy dissipation. In our simulation, we ‘‘mimic”
chemical doping by varying the model parameters (additional
details discussed in the next section).

The outline of the paper is as follows. In Section 2, we discuss
the computational model for SMAs based on mesoscale Landau
theory. This serves as the ‘‘oracle” to calculate properties and we
also use it as a source of data to fit an empirical model that serves
as input to our design. In Section 3, we discuss and develop our
experimental design strategy which acts on the results from the
computational model of Section 2. Section 4 discusses the results
from our design and evaluates its performance compared to using
a random selection strategy for guiding the next experiment or
using the best predicted model value. In Section 5, we distill the
key ideas and state the general framework for materials design
where model parameters or features are unknown, and illustrate
the algorithm in Section 5.1 with a worked example using a poly-
nomial cost function. In Section 5.2, we provide a second example
but in the context of a network problemwith discrete states, which
again explains the mathematics underlying our approach in a sim-
ple form. In this example, the cost function is defined as the prob-
ability of undesirable states.

2. Ginzburg-Landau theory

We discuss here the TDGL theory for SMAs. Note that through-
out this paper we denote vectors by bold letters. We also use
uppercase and lowercase letters to represent random variables
and their realizations, respectively. Our model for the alloy is a
two-dimensional version of the cubic to tetragonal martensitic
transformation appropriate for materials such as FePd or InTl
[28]. The symmetry-adapted strains e1; e2, and e3 represent hydro-
static, deviatoric, and shear modes, respectively, where
e2 ¼ ð1=2Þð�xx � �yyÞ is the strain responsible for the transition
(order parameter, OP), and e1 ¼ ð1=2Þð�xx þ �yyÞ and e3 ¼ �xy. These
strains are defined in terms of the linear strain components of elas-
ticity in 2D, �ij ¼ 1=2½ð@ui=@xjÞ þ ð@uj=@xiÞ�, where ui is the i-th
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Fig. 1. Stress-strain curves before design and that showing targeted response. (a) Typical stress-strain curve for a shape memory alloy with typically large hysteresis giving
rise to large dissipation. (b) The targeted stress-strain response with small hysteresis and dissipation. Our proposed experimental design guides the ‘‘next experiments”
towards (b).
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