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This paper presents the integration of a cognitive architecture with an intelligent decision support model (IDSM)
that is embedded into an autonomous non-deterministic safety critical system. The IDSM will integrate multi-
criteria decision making via intelligent technologies like expert systems, fuzzy logic, machine learning and ge-
netic algorithms.

Cognitive technology is currently simulated in safety—critical systems to highlight variables of interest, in-
terface with intelligent technologies, and provide an environment that improves a system’s cognitive perfor-
mance. In this study, the IDSM is being applied to an actual safety—critical system, an unmanned surface vehicle
(USV) with embedded artificial intelligence (AI) software. The USV’s safety performance is being researched in a
simulated and a real world nautical based environment. The objective is to build a dynamically changing model
to evaluate a cognitive architecture’s ability to ensure safe performance of an intelligent safety—critical system.
The IDSM does this by finding a set of key safety performance parameters that can be critiqued via safety
measurements, mechanisms and methodologies. The uniqueness of this research will be on bounding the deci-

sion making associated with the cognitive architecture’s key safety parameters (KSP).

Other real-time applications that could benefit from advancing the safety of cognitive technologies are un-
manned platforms, transportation technologies, and service robotics. The results will provide cognitive science
researchers a reference for safety engineering artificially intelligent safety—critical systems.

1. Introduction

Safety engineering of a cognitive architecture in safety-critical sys-
tems has had few successes over the past three decades owing to a lack
of determinism and predictability of the architecture’s safety perfor-
mance (Varadaraju, 2011). To address this, the adaptability of the ar-
chitecture needs to be constrained through the use of fault-tolerant
design as a way to provide safety assurances (Avizienis, 1985). Ac-
complishing this in a cognitive architecture is done by merging expert
systems, fuzzy logic, machine learning and genetic algorithm concepts
(Kowalski et al., 2005; Pal et al., 2012).

This study began by integrating a cognitive architecture into an
artificially intelligent, safety-critical system, which in this case is an
USV. The intelligent system used on the USV is called the autonomous
small unit riverine craft (ASURC). The cognitive architecture is based
on the SOAR cognitive architecture, an architecture that has controlled
robotic platforms prior to this experiment (Laird et al., 1987).

The research observed and evaluated the ASURC’s performance of
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the safety-critical objective of avoiding an unintended collision event
with a dynamic obstacle. The system will sense its environment in order
to maintain safe distances, appropriate time responses and platform
control required by the scenario. When the obstacle was detected, the
sensor data was then evaluated at a symbolic level by the AI controller.
Performance results led to safety measurements, mechanisms, and
methodologies that quantified the ASURC’s responses, such as the ap-
propriate turn angle at the appropriate time based on what the variable
tolerances are for a given task.

The requirement for determinism and predictability increases the
complexity of tasking in any environment. This safety requirement is
understood for some unmanned and autonomous platforms. However,
the ASURC executed the experiment in a maritime environment, which
required USV-specific safety research that is novel to that of an un-
manned or autonomous USV without a cognitive architecture. The
input provided influenced the logic for the ASURC’s safety design and is
what makes this research novel.

The prescribed tolerances for this experiment were based on the
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Table 1
Boat safety levels.
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Safety level 1 1 1 2 3 4
Effect on craft and Normal Nuisance Operating Emergency procedures; significant reduction in Large reduction in safety margins; Deaths, usually with
occupants limitation safety margins; difficult to crew to cope with serious injury to small number of loss of craft
adverse condition; passenger injuries occupants
Effect category Minor Major Hazardous Catastrophic

International Code of Safety for High-Speed Craft (2000)-2008 Edition.
This reference defines a safety failure as, “Any improper operation re-
sulting in a hazardous or catastrophic effect.” It classifies maritime
vessel safety into four levels (1-4) based on the level of degradation of
safety with regard to personnel and equipment (The Maritime and
Coastguard Agency, 2008). Table 1 lists the levels of safety.

The experiment was conducted in a real-world nautical environ-
ment as well as a simulated environment tuned to represent all the
appropriate physics models of a nautical environment. This gave the
safety engineer the design specifications to ensure safe performance of
the software subcomponents. The participants in the experiment were
as follows:

(a) Real and simulated USVs in simulated environment with a human
controller and an Al controller

(b) Real USV in real-world environment with human controller and AI
controller

The data used to determine system performance were based on the
safety levels in Table 1; a human operator executing scenarios; and
information garnered through an expert elicitation process prior to,
during, and after the experimentation. The AI controller system then
executed the same scenarios on the USV in a rea-world environment as
well as in simulation to test the variables of interest that affect avoiding
an unintended collision event with a dynamic obstacle. The criteria
listed below aimed to provide way to determine and predict Al con-
troller behavior.

(a) Determine what a safety failure is for transitioning from scripted
synthetic task to an unstructured task based on Table 1.

(b) [Analyze] feedback of what the boundaries should be for the vari-
ables of interest to ensure safe task execution.

(c) {Develop} a model to show how boundaries of the variables of
interest affect the decisions to safely complete a task.

2. Material and method
2.1. Prior work

Early Al research dealt with creating systems that emulated human
actions using programming techniques such as “if-then” statements and
basic searches (Geramifard et al., 2013). These Al systems were only
“intelligent” with regard to the tasks they were designed to complete.
The depth of knowledge was also only as current as the latest program
update (Laird et al., 1987).

Cognitive architectures were developed based on how human cog-
nition works; for example—learning, memory, and decision making
(Lehman et al., 2006). Examples of intelligent systems that have de-
monstrated human traits are:

(a) Learning Applied to Ground Vehicles demonstrated navigational
algorithms merged by adaptive methods. These methods used in-
formation from previous experiences to change the system’s beha-
vior accordingly (Jackel et al., 2006).

(b) Control Architecture for Robotic Agent Command and Sensing de-
monstrated the capability to deterministically react to

unanticipated occurrences and re-plan in the face of changing goals,
conditions, or resources (Huntsberger and Stoica, 2010).

An issue with many cognitive architectures (not necessarily the ones
mentioned above) is that their design does not allow them to effectively
deal with unpredictable real-world environments. The development of
cognitive architectures and their safety design has mostly occurred in
environments like gaming and training simulations because of the
comprehensive knowledge and understanding of those environments.
This trend has stifled the development of cognitive architectures, while
newly developed autonomous systems are created without a compatible
architecture. This has led to development occurring mostly by the
manipulation of pre-existing platforms and their capabilities.
Essentially, implementation of cognitive architectures has mostly been
additive to deterministic systems rather than a symbiotic development
with an autonomous platform (Lehman et al., 2006).

2.2. Safety engineering process

System-level hazards are situations unsafe to personnel and equip-
ment. These hazards can be adjudicated through a safety engineering
process designed to identify, analyze, control, and mitigate them. Safety
critical systems, including humans, will never be considered 100 per-
cent safe (Storey, 1996); however, by using safety processes, these
safety failures can be identified and mitigated (Bell and Reinert, 1993).
Fig. 1 displays the safety engineering process that identified the pri-
mary safety concerns associated with the ASURC avoiding an unin-
tended collision with a dynamic obstacle.

(a) The first step was conducting a systems safety analysis of the

ASURC that determined and evaluated the various applications and

subsystems involved. This was initially conducted at implementa-

tion and was continuously reassessed during all stages of develop-
ment. The purpose was to garner information that ensured safety

requirements were feasible (Kurd et al., 2007).

Next, a high-level functional hazard analysis was performed that

identified the major operational functions of the USV that provided

an understanding of what an incident for each identified hazard

could be (Kurd et al., 2007).

(c) Then a preliminary analysis was performed that identified hazards,
causal factors, and generic mishaps. This was performed at the start
of the software life cycle to explore possible hazards.

(d) Next, safety tasks were postulated based on the above parameters as
well as human based “trust” performance criteria, identified by
human controlled runs of the scenarios and interviews (Trafton
et al., 2006).

(e) This all led to identifying preliminary safety concerns that con-
firmed the ASURC’s designs obeyed and improved the safety re-
quirements by influencing development design (Kurd et al., 2007).

(f) This process iteratively continued to compare hazards, causal fac-
tors, and generic mishaps to continuously update the primary safety
concerns. The last phase provided a clear and defendable argument
that the system performed within the tolerances for being con-
sidered safe. The correlation and mapping of the information en-
sured the following:

(1) Proper wording to properly address the hazards and causal

(b
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