
 Procedia CIRP 60 (2017) 279 – 283

Available online at www.sciencedirect.com

2212-8271 © 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientific committee of the 27th CIRP Design Conference
doi: 10.1016/j.procir.2017.01.047

ScienceDirect

27th CIRP Design 2017

Using graph-based design languages to enhance the creation of virtual
commissioning models

 Markus Kiesela,*, Philipp Klimantb, Nicolai Beisheima, Stephan Rudolphc , Matthias Putzb

aAlbstadt-Sigmaringen University, Jakobstraße 1, 72458 Albstadt-Ebingen, Germany
bInstitute for Machine Tools and Production Processes, Technische Universität Chemnitz, Reichenhainer Straße 70, 09126 Chemnitz, Germany

cInstitute of Statics and Dynamics of Aerospace Structures, Universität Stuttgart, Pfaffenwaldring 27, 70550 Stuttgart, Germany

* Corresponding author. Tel.: +49-7571-732-9426; fax: +49-7571-732-9152. E-mail address: kiesel@hs-albsig.de

Abstract

‘Industrie 4.0’ based production systems are likely to change the way future products are manufactured. As information technology gains
influence on these systems there is a chance of higher flexibility due to decentralized logic and artificial intelligence. All this leads to a higher
complexity and also indeterminism is feasible. Therefore simulation technologies will become a mandatory requirement, especially virtual
commissioning will get necessary as the amount of software is rising.
A lot of manpower is required to establish and maintain a virtual commissioning system as it needs a large database of standard components.
Therefore in most cases small- and mid-sized companies are forced to avoid such technologies. Using graph-based design languages to create
virtual commissioning models can help to solve this problem. The basic principle is to shape an abstract model of a production system which will
then be individually built within the domain specific tools. One of these should be a virtual commissioning tool to evaluate the functionality of
the built model. If a change in the design is necessary, the new virtual commissioning model can be regenerated automatically. This approach is
even more reasonable, if graph-based design languages are used throughout the whole product life cycle.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 27th CIRP Design Conference.

Keywords: Simulation; Design method; Design optimization; Digital Manufacturing System

1. Motivation

Virtual Commissioning is a key technology to increase
robustness and quality of production systems, by providing the
opportunity to test, evaluate and enhance processes within the
system, based on a digital mock-up (see e.g. [1], [2]).

Currently only big engineering teams can use this
technology because of the high manpower required to build the
simulation models. With technologies like Industrie 4.0 or
Internet of Things (short: IOT) on the rise, the flexibility of
production systems will increase (see e.g. [3], [4], [5]). But this
also causes a huge complexity growth of the production
systems, e.g. caused by the decentralized logic and the artificial
intelligence.

Hence the usage of technologies like virtual commissioning
will get mandatory, even for small- and mid-sized companies,
to maintain or expand their market share. As mentioned earlier,
currently the biggest issue is to create and update the simulation
models needed for the virtual commissioning process. With the
increasing complexity this issue even gets bigger. One possible
solution is an automated creation of these simulation models,
by applying graph-based design languages.

2. Graph-based Design Languages and AutomationML

The methodology stated in this paper is based on two main
concepts to enhance the creation of virtual commissioning
models. This chapter will provide a general overview of these
concepts.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of the 27th CIRP Design Conference

280 Markus Kiesel et al. / Procedia CIRP 60 (2017) 279 – 283

2.1. Graph-based Design Languages

Graph-based design languages are used for design process
automation based on abstract knowledge in order to get the best
possible result (see e. g. [6], [7]). A design language consists of
three fundamental components:

Vocabulary
The vocabulary is one part of the abstract knowledge. It
describes the available components within the design
language and their correlation.

Rules
The rules are the second part of the abstract knowledge and
are basically the blueprint for the design process. The rules
can be influenced by a variety of parameters, which can lead
to completely different models.

Compiler
A compiler instantiates the design described by the
vocabulary and rules. The model that was generated by the
compiler can be further processed as meta-model for several
other applications.

Figure 1: Overview of graph-based design languages [8]

Graph-based design languages can form nearly every aspect
of the target model, for instance the geometry of a product or
the program code used for machining (CNC-code). The
necessary abstract knowledge to form these aspects has to be
introduced to the system by experts in their field (left-hand side
in the figure above). A complete overview of the correlations
within a graph-based design language process is also shown in
Figure 1.

In this research project the creation and execution
functionality of graph-based design languages is provided by
the Design Compiler 43 (IILS mbH [9]). It has already proven
the benefits of graph-based design languages in several
research (e.g. [10], [11]) and business projects.

2.2. AutomationML

Due to the rising complexity of Industrie 4.0 based
production systems it is obligatory that engineering teams of
different departments can exchange information efficiently.
One format which can handle heterogeneous data is the XML-
based data format AutomationML (see e. g. [12], [13]). It can
contain much more information than for example a typical
CAD exchange format like STEP or IGES. To make
AutomationML easy accessible it incorporates several
standards.

Figure 2: AutomationML Overview [14]

The open standards, which are used by AutomationML, are
shown in Figure 2. The AutomationML file itself is based on
the CAEX Format (IEC 62424) which is just slightly enriched.
As it is XML-based and due to the possibility to reference other
files, it is easy expandable. The present components, the
hierarchical structure as well as the connection between the
components are described with the CAEX Format.

The COLLADA standard provides the functionality for the
representation of geometry. It is capable of saving geometry as
a boundary representation (typically for CAD software) as well
as a triangulated mesh representation. Besides the geometry,
COLLADA can also contain information about the kinematics
and physics of an object, as well as other geometry related
information.

The PLCopen XML format is also included into
AutomationML and makes it especially interesting for virtual
commissioning purposes. Since it is based on the IEC61131-3,
it adds the functionality to store and transfer programming
languages for PLCs, embedded controls and industrial PCs.
This data can be evaluated on software or hardware in the loop
systems typically required for virtual commissioning.

Also shown in Figure 2 is the ability to incorporate further
formats to add special functionality to AutomationML.

https://isiarticles.com/article/157562

