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A B S T R A C T

Early versions of artificial neural networks’ ability to learn from data based on multivariable statistics and
optimization demanded high computational performance as multiple training iterations are necessary to find an
optimal local minimum. The rapid advancements in computational performance, storage capacity, and big data
management have allowed machine-learning techniques to improve in the areas of learning speed, non-linear
data handling, and complex features identification. Machine-learning techniques have proven successful and
been used in the areas of autonomous machines, speech recognition, and natural language processing. Though
the application of artificial intelligence in the nuclear engineering domain has been limited, it has accurately
predicted desired outcomes in some instances and has proven to be a worthwhile area of research. The objectives
of this study are to create neural networks topologies to use Oregon State University’s Multi-Application Small
Light Water Reactor integrated test facility’s data and evaluate its capability of predicting the systems behavior
during various core power inputs and a loss of flow accident. This study uses data from multiple sensors, focusing
primarily on the reactor pressure vessel and its internal components. As a result, the artificial neural networks
are able to predict the behavior of the system with good accuracy in each scenario. Its ability to provide technical
data can help decision makers to take actions more rapidly, identify safety issues, or provide an intelligent
system with the potential of using pattern recognition for reactor accident identification and classification.
Overall, the development and application of neural networks can be promising in the nuclear industry and any
product processes that can benefit from utilizing a quick data analysis tool.

1. Introduction

There has been significant scientific interest in understanding and
imitating natural and biological process, particularly neural biology.
One of the first neural methodologies was first achieved with the
creation of the perceptron capable of reproducing some of the Boolean
operators (Rosenblatt, 1958). Later in the mid 80’s there was a lot of
effort to find a powerful synaptic modification rule that will allow an
arbitrarily connected neural network to develop an internal structure
that is appropriate for a particular task (Rumelhart et al., 1986); in
other words, a self-organizing method that can be used in machines to
learn a task without being explicitly programmed. The application of
neural methods has been found useful in addressing problems that
usually require the recognition of complex patterns or complex classi-
fication decisions. In the domain of computers science, there has been a
rapid improvement of self-organizing methods along with

advancements in data storage, parallel computing, and processing
speeds, which have made possible for these methods to succeed in the
development of new products and technologies. In the engineering
domain, particularly in nuclear engineering, the application of machine
learning methods, e.g. neural networks, utilizing full-scale facilities or
real components data has been rather limited. In early applications
researchers have used neural networks to assess the heat rate variation
using the thermal performance data from the Tennessee Valley Au-
thority Sequoyah nuclear power plant, where a small artificial neural
network was used to determine the variables that affect the heat rate
and thermal performance of the plant by looking at the partial deri-
vative of the different input patterns (Zhichao and Uhrig, 1992). Others
have developed monitoring systems based on auto-associative neural
networks and their application as sensor calibration systems and sensor
fault detection systems (Hines et al., 1996) using the High Flux Isotope
Reactor operated at Oak Ridge National Laboratory and an
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experimental Breeder Reactor (Upadhyaya and Eryurek, 1992). During
the mid-1990s a group of scientists explored the application of neural
networks in the area of multiple-failures detection with the objective to
develop an operator support system that can support operators during
severe accidents in a nuclear power plant, referred as Computerized
Accident Management System (Fantoni and Mazzola, 1996). In nuclear
operations the inclusion of redundant, independent and diverse systems
is necessary to ensure adequate defense-in-depth; however, the increase
in systems lead to more complex human–machine interactions. Neural
networks have also been trained with data from a simulator, and the
results proved to be very satisfactory at modeling multiple sensor fail-
ures and component failure identification (Sirola and Talonen, 2012).
Other areas outside of nuclear surveillance and diagnostics have also
shown interest in the application of neural networks; for instance, in
two-phase flow the use of neural methods as a method to predict two-
phase mixture density (Lombardi and Mazzola, 1997) or flow regime
identification (Tambouratzis and Pàzsit, 2010). More recently, re-
searchers have applied advanced optimization algorithms for the pre-
diction of the behavior of systems components such as a printed circuit
heat exchanger (Ridluan et al., 2009; Wijayasekara et al., 2011), power
peaking factor estimations (Montes et al., 2009), key safety parameter
estimation (Mazrou, 2009) and functional failures of passive systems
(Zio et al., 2010). The reduction in computational cost and the avail-
ability of data facilitates further the use of such methods where pre-
dicting more complex tasks is desired. In this research the application of
neural methods using two transient events from a prototypic test fa-
cility is presented, where noise and uncertainty are present as an in-
herently natural phenomenon of a realistic problem.

2. Materials and methods

2.1. Multi-application small light water reactor

The Multi-Application Small Light Water Reactor (MASLWR) is an
integral pressurized test facility developed by Idaho National
Engineering and Environmental Laboratory, Oregon State University
and NEXANT-Bechtel (Reyes et al., 2007), with the conceptual design
shown in Fig. 1. The MASLWR module includes a self-contained vessel,
steam generator and containment system that rely on natural circula-
tion for its normal operation. The test facility is scaled at 1:3 length
scale, 1:254 volume scale and 1:1 time scale, and it is designed for full
pressure (11.4 MPa) and full temperature (590 K) prototype operation
and is constructed of all stainless steel components (Reyes et al., 2007).
The purpose of this facility is to study the behavior of a small light
water reactor concept design that uses natural circulation for both
steady-state and transient operation. The MASLWR concept was the
predecessor to the NuScale small modular reactor design.

The data used in this study has been collected for the International

Atomic Energy Agency as an International Collaborative Standard
Problem (ICSP). Two different data sets were used to train two different
neural networks. The first, ICSP-3, characterize the steady-state (S.S.)
natural circulation in the primary side during various core power inputs
(Mai and Hu, 2011). The test procedure was to increase the power in-
puts of the heaters stepwise from 10% to 80% full power in the core by
10% increments and had a total duration of 6348 s (∼1.76 h). The
second, ICSP-2, characterizes the activation of safety systems of the
MASLWR test facility, and the long-term cooling of the facility to de-
termine the progression of a loss-of-feedwater transient (LOFW). For
this test, first, the facility was brought to steady state at 75% core
power, 8.62 MPa and the main feed water running in the steam gen-
erator, then, the main feed water was shut off, the core was set to decay
power, and a blow-down procedure was conducted until the High
Pressure Containment (HPC) and Reactor Pressure Vessel (RPV) were at
equal pressures (Mai and Ascherl, 2011). This transient had a total
duration of 16,483 s (∼4.58 h).

2.2. Data

Data recorded from 58 different sensors was used as labeled data for
the supervised learning process, with the purpose of capturing the be-
havior inside of prototype’s RPV. Given that the data collected in the
test facility inherently contains noise and uncertainty, the use of a
neural network along with the backpropagation algorithm is suitable as
this algorithm is robust to noise (Mitchel, 1997). However, the main
challenge of the application of such method to this particular applica-
tion is to find the suitable parameters that are to represent the problem,
also known as feature selection. The selection of the features has been
based on the sensors that are mainly controlled by the test facility’s
operator. Table 2 and Table 1 show the sensors used as inputs and
outputs.

Moreover, given the different scales in the data, the entire set had to
be normalized, using Eq. (1), to a [0,1] range to improve learning and
avoid the saturation regions of the sigmoid function.
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The implementation of other normalizing techniques can also be
used as long as it scales within the output range of the selected acti-
vation function.

Fig. 1. MASLWR‘s conceptual design.

Table 1
MASLWR instrumentation used as output parameters.

Sensor Label Description

TF-[611-615] Thermocouples Inside the Outer Coil Pipe of the Steam
Generator Inlet

TF-[621-625] Thermocouples Inside the Middle Coil Pipe of the Steam
Generator Inlet

TF-[631-634] Thermocouples Inside the Inner Coil Pipe of the Steam Generator
Inlet

TF-[701-706] Steam Generator Liquid Temperature
PT-602 Main Steam Pressure
FVM-602-T Main Steam Temperature
FVM-602-P Main Steam Pressure
FVM-602-M Main Steam Pressure Volumetric Flow Rate
TH-[141-146] Core Heater Rod Temperatures
TF-132 Primary Water Temperature inside Chimney below Steam

Generator Coils
DP-101 Pressure Loss in the Core
DP-102 Pressure Loss between Core Tope and Cone
DP-103 Pressure Loss in the Riser cone
DP-104 Pressure Loss in the Chimney
DP-105 Pressure Loss across the Steam Generator
DP-106 Pressure Loss in the annulus below Steam Generator
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