
JID:JLAMP AID:119 /FLA [m3G; v1.177; Prn:24/05/2016; 14:00] P.1 (1-28)

Journal of Logical and Algebraic Methods in Programming ••• (••••) •••–•••

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
www.elsevier.com/locate/jlamp

Configuration logics: Modeling architecture styles

Anastasia Mavridou, Eduard Baranov, Simon Bliudze ∗, Joseph Sifakis

École polytechnique fédérale de Lausanne, Rigorous System Design Laboratory, Station 14, CH-1015, Lausanne, Switzerland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 October 2015
Received in revised form 12 May 2016
Accepted 13 May 2016
Available online xxxx

Keywords:
Architecture styles
Coordination
Configuration logics
Component interaction
BIP

We study a framework for the specification of architecture styles as families of architectures
involving a common set of types of components and coordination mechanisms. The
framework combines two logics: 1) interaction logics for the specification of architectures
as generic coordination schemes involving a configuration of interactions between typed
components; and 2) configuration logics for the specification of architecture styles as
sets of interaction configurations. The presented results build on previous work on
architecture modeling in BIP. We show how propositional interaction logic can be extended
into a corresponding configuration logic by adding new operators on sets of interaction
configurations. In addition to the usual set-theoretic operators, configuration logic is
equipped with a coalescing operator + to express combination of configuration sets.
We provide a complete axiomatization of propositional configuration logic as well as
decision procedures for checking that an architecture satisfies given logical specifications.
To allow genericity of specifications, we study first-order and second-order extensions of
the propositional configuration logic. First-order logic formulas involve quantification over
component variables. Second-order logic formulas involve additional quantification over
sets of components. We provide several examples illustrating the application of the results
to the characterization of various architecture styles. We also provide an experimental
evaluation using the Maude rewriting system to implement the decision procedure for the
propositional flavor of the logic.

© 2016 Published by Elsevier Inc.

1. Introduction

Architectures are common means for organizing coordination between components in order to build complex systems
and to make them manageable. They depict generic coordination principles between components and embody design rules
that can be understood by all. Architectures allow thinking on a higher plane and avoiding low-level mistakes. They are a
means for ensuring global coordination properties between components and thus, achieving correctness by construction [1].

Using architectures largely accounts for our ability to master complexity and develop systems cost-effectively. System
developers extensively use reference architectures ensuring both functional and non-functional properties, e.g. fault-tolerant,
time-triggered, adaptive, security architectures.

Many languages have been proposed for architecture description such as architecture description languages, e.g. [2],
coordination languages, e.g. [3] and configuration languages [4]. All these works rely on the distinction between behavior of
individual components and their coordination in the overall system organization. Informally architectures are characterized

* Corresponding author.
E-mail addresses: anastasia.mavridou@epfl.ch (A. Mavridou), eduard.baranov@epfl.ch (E. Baranov), simon.bliudze@epfl.ch (S. Bliudze),

joseph.sifakis@epfl.ch (J. Sifakis).

http://dx.doi.org/10.1016/j.jlamp.2016.05.002
2352-2208/© 2016 Published by Elsevier Inc.

http://dx.doi.org/10.1016/j.jlamp.2016.05.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:anastasia.mavridou@epfl.ch
mailto:eduard.baranov@epfl.ch
mailto:simon.bliudze@epfl.ch
mailto:joseph.sifakis@epfl.ch
http://dx.doi.org/10.1016/j.jlamp.2016.05.002

JID:JLAMP AID:119 /FLA [m3G; v1.177; Prn:24/05/2016; 14:00] P.2 (1-28)

2 A. Mavridou et al. / Journal of Logical and Algebraic Methods in Programming ••• (••••) •••–•••

Fig. 1. Master/Slave architectures.

by the structure of the interactions between a set of typed components. The structure is usually specified as a relation, e.g.
connectors between component ports.

The field of software architecture remains relatively immature [5]. A lot of foundational issues remain open. One is the
distinction between architectures and their properties. Architecture styles characterize not a single architecture but a family
of architectures sharing common characteristics such as the type of the involved components and the topology induced
by their coordination structure. Simple examples of architecture styles are Pipeline, Ring, Master/Slave, Pipe and Filter. For
instance, Master/Slave architectures integrate two types of components, masters and slaves such that each slave can interact
only with one master. Fig. 1 depicts four Master/Slave architectures involving two master components M1, M2 and two
slave components S1, S2. Their communication ports are, respectively, m1, m2 and s1, s2. The architectures correspond
to interaction configurations:

{{s1, m1}, {s2, m2}
}

,
{{s1, m1}, {s2, m1}

}
,

{{s1, m2}, {s2, m1}
}

and
{{s1, m2}, {s2, m2}

}
. The set

{si, m j} denotes an interaction between ports si and m j . A configuration is a non-empty set of interactions. The Master/Slave
architecture style characterizes all the Master/Slave architectures for arbitrary numbers of masters and slaves.

The paper studies the relation between architectures and architecture styles. This relation is similar to the relation
between programs and their specifications. As program specifications can be expressed by using logics, e.g. temporal logics,
architecture styles can be specified by configuration logics characterizing classes of architectures.

First, we propose a propositional configuration logic (PCL) whose formulas represent, for a given set of components, the
allowed configuration sets. Then, we introduce first-order and second-order logics as extensions of the propositional logic.
These allow genericity of description as they are defined for types of components.

The proposed formalism is declarative and has some similarities with languages used for a feature-oriented analysis
of architectures, such as OCL [6]. It differs from formalisms used to describe the possible configurations of a dynamic
architecture by using graph grammars [7,8].

The meaning of a configuration logic formula is a configuration set. A configuration on a set of components represents
a particular architecture. Thus, configuration logic formulas describe architecture sets. The definition of configuration logics
requires considering three hierarchically structured semantic domains:

The lattice of interactions. An interaction a is a non-empty subset of P , the set of ports of the integrated components.
Its execution implies the atomic synchronization of all component actions (at most one action per component)
associated with the ports of a.

The lattice of configurations. Configurations are non-empty sets of interactions characterizing architectures.
The lattice of configuration sets. Sets of configurations are properties described by the configuration logic.

We aim at describing systems of interacting components: in each configuration there must be at least one interaction
and each of the interactions should involve at least one component. Therefore, we only consider non-empty interactions and
configurations.

Fig. 2 shows the three lattices for P = {p, q}. For the lattice of configuration sets, we show only how it is generated.
This work consistently extends results on modeling architectures by using propositional interaction logic [9–11], which

are Boolean algebras on the set of ports P of the composed components. Their semantics is defined via a satisfaction
relation |=i between interactions and formulas. Each interaction logic formula φ represents exactly the set of interactions
corresponding to Boolean valuations of P satisfying φ.

Configuration logic is a powerset extension of interaction logic. Its formulas are generated from the formulas of the
propositional interaction logic by using the operators union, intersection and complementation, as well as a coalescing
operator +. To avoid ambiguity, we refer to the formulas of the configuration logic that syntactically are also formulas of
the interaction logics as interaction formulas. The semantics of the configuration logic is defined via a satisfaction relation
|= between configurations γ = {a1, ..., an} and formulas. An interaction formula f represents any configuration consisting of
interactions satisfying it; that is γ |= f if, for all a ∈ γ , a |=i f . For set-theoretic operators we take the standard meaning.
The meaning of formulas of the form f1 + f2 is all configurations γ that can be decomposed into γ1 and γ2 (γ = γ1 ∪ γ2)
satisfying, respectively, f1 and f2. The formula f1 + f2 represents configurations obtained as the union of configurations of
f1 with configurations of f2.

https://isiarticles.com/article/157991

