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In large industrial greenhouses, plants are usually treated following well established protocols for water-
ing, nutrients, and shading/light. While this is practical for the automation of the process, it does not tap
the full potential for optimal plant treatment. To more efficiently grow plants, specific treatments accord-
ing to the plant individual needs should be applied. Experienced human gardeners are very good at treat-
ing plants individually. Unfortunately, hiring a crew of gardeners to carry out this task in large
greenhouses is not cost effective. In this work we present a cognitive system that integrates artificial
intelligence (Al) techniques for decision-making with robotics techniques for sensing and acting to
autonomously treat plants using a real-robot platform. Artificial intelligence techniques are used to
decide the amount of water and nutrients each plant needs according to the history of the plant.
Robotic techniques for sensing measure plant attributes (e.g. leaves) from visual information using 3D
model representations. These attributes are used by the Al system to make decisions about the treatment
to apply. Acting techniques execute robot movements to supply the plants with the specified amount of
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water and nutrients.
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1. Introduction

While agriculture tasks entailing repetitive action on the basis
of immediate sensing have been successfully automated
(Blackmore, 2007), gardening considering longer time frames has
remained elusive. Taking individualized care of plants is difficult
because although plants react to changes of light, water and/or
nutrients, these reactions come with long, variable delays and
are also quite variable in strength. Moreover, individual reactions
are history dependent, because an initially healthy plant will react
differently to a treatment than a stressed or damaged one.

Human gardeners take actions relying on their expertise and
their knowledge of the history of events observed in a given planta-
tion. However, to attend to the needs of a plantation in large indus-
trial greenhouses, having a team of gardeners might not be cost
effective. The alternative is to use a robotic system capable of tak-
ing actions according to the specific needs of every plant. This is
the main focus of this paper, where a robotic cognitive architecture
for automatic gardening is presented. The architecture integrates
artificial intelligence techniques for decision-making with robotics
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techniques for sensing and acting. Low-level robotic approaches
comprises short-term interaction of the robot with plants entailing
3D model acquisition of deformable objects (leaves) (Alenya et al.,
2013) and robot-arm manipulation approaches for active vision
and individual treatment application (Fischbach, 2011).

For making decisions we implemented the decision-making
framework presented in Agostini et al. (2014), specifically designed
to generate action plans in tasks involving long delays between
actions and effects. This framework focuses on the cognitive abili-
ties needed, namely decision-making based on logic-based plan-
ning and learning weakly correlated cause-effects along
sequences of events. These mechanisms compile expertise so as
to deduce, from past sequences of events, the long-term treat-
ments producing the best desired results in each particular situa-
tion of a plant. Planning and learning are interleaved in a way
that permits uninterrupted operation by requesting a human gar-
dener to instruct the treatments when the knowledge acquired
so far is insufficient to make a decision. In this case, the gardener
simply specifies the immediate treatment to apply to the plant
while the learning approach autonomously finds the relevant
events that compactly describe the plant evolution under that
treatment. For instance, the gardener may instruct the robot to
provide small doses of nutrient in combination with doses of water
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three times a day, if he detects a low growth rate of the plant due
to lack of nutrients, or simply small doses of water twice a day, if
he knows that large doses of nutrients and water has been admin-
istered right before. With these instructions, the system progres-
sively improves the decision-making performance by coding
plant evolutions into planning operators until the human interven-
tion is not longer required.

Many industrial and service tasks require these cognitive abili-
ties, and we have worked on the gardening setting because of our
involvement in the European project GARNICS (GARNICS, 2010-
2013). The goal of GARNICS was to automatically monitor large
botanic experiments in a greenhouse to determine the best treat-
ments (watering, nutrients, light) to optimize predefined aspects
(growth, plant status) and to eventually guide robots to obtain
the required measures from leaves and apply the treatments pre-
scribed by the system.

The cognitive architecture has been tested in an industrially-
relevant plant-phenotyping application (Houle et al., 2010;
Furbank and Tester, 2011), with very encouraging results as pre-
sented in Section 3. In the final experiment within the GARNICS
project, images of Tobacco plants (Nicotiana tobacum cv. Samsun)
were acquired every hour for up to 30days, from which the
required appearance features were extracted. Moreover, for each
individual plant, light intensity was measured, and water and
nutrients were dispensed using an automated flexible-tube pump.
The image dataset has been made publicly available (Scharr et al.,
2014; Minervini et al., 2015) and further details on how these
experimental data were collected can be found therein (cmp. also
Section 3, esp. Fig. 6).

1.1. Related works

Robotics applications for the execution of human-like tasks
have been tackled using techniques of human-robot interaction,
task planning, and symbol grounding (Ingrand and Ghallab,
2014). Artificial intelligence planning techniques play a fundamen-
tal role in such applications since they use a symbolic, logic-based
notation compatible with human language. This allows for a natu-
ral human-robot interaction, letting a lay person easily provide
instructions to the robot (Argall et al., 2009). For a successful inte-
gration of these techniques in a robotic platform, it is mandatory to
ground the symbolic descriptions of the Al planning methods to let
the robot interact with the real world in order to execute a task
(Harnad, 1990). This is normally done by integrating methods of
different levels of abstractions (Ingrand and Ghallab, 2014;
Kriiger et al., 2011; Beetz et al., 2010; Dantam et al., 2016;
Paxton et al., 2016), ranging from purely symbolic methods
(Ghallab et al., 2004), to sensor information processing (Szeliski,
2010) and acting methods (Kemp et al., 2007). Several approaches
integrate planning and acting for the robotic execution of human
like tasks. In Dantam et al. (2016), a new architecture that inte-
grates task and motion planning (TMP) is proposed. This architec-
ture uses an incremental constraint-based task planning to
dynamically incorporate motion feasibility at the task level during
task execution, facilitating the symbol grounding problem. The
architecture presented in Dianov et al. (2016), on the other hand,
incorporates human assistance to demonstrate relevant actions
for the task. The main novelty of their approach is a method for
learning from demonstration that permits reusing knowledge of
previously learned tasks to accelerate the learning of new ones.
This is done by exploiting semantic similarities between tasks
parameters. Learning from demonstration has also been used in
the architecture presented in Paxton et al. (2016). In this case, a
human provides example executions of symbolic actions that are
used to update low-level probabilistic models parametrized for

each specific robotic platform, which permits evaluating the feasi-
bility of grounding symbolic actions.

Robotics applications has also been implemented for the task of
automatic gardening (Correll et al.,, 2010; Blackmore, 2007; Al-
Beeshi et al., 2015). In Correll et al. (2010) a set of mobile robots
are equipped with eye-in-hand cameras and mobile arms to water
and harvest tomato plants according to their individual needs. To
recognize position and maturity level of tomatoes (green or red),
the system selects a robot that moves to the plant to take images
from six (fixed) different perspectives. Tomatoes are recognized
using a feature-based method that detects circles and smooth
areas using a convolution approach (Torralba et al.,, 2004). A
humidity sensor is placed in the soil to evaluate watering require-
ments. Task planning is carried out to allocate plants to robots.
However, they do not apply task planning or any other Al approach
to decide the treatment for each plant according to its needs.
Water is supplied to the plant in a fixed amount and in a reactive
manner when the value of the humidity sensor drops below a pre-
defined threshold. Another example of a robotic system applied to
automatic gardening is presented in Al-Beeshi et al. (2015). In this
case, the system is split in two parts: one part attached to the
greenhouse for the control of the environmental light, tempera-
ture, and humidity, and the other one fixed on a robot to control
plant watering and seeding. Watering and seeding take place at
predefined positions in the soil and are triggered by manually acti-
vated buttons. As in Correll et al. (2010), humidity sensors are
placed in the soil to reactively water plants using a thresholded
approach. In their architecture, none of the automatic processes
uses artificial intelligence techniques for planning or learning.

In the following sections we present our cognitive architecture
for automatic gardening. Section 2 introduces the general architec-
ture of the system. In this section the robotic mechanisms for sens-
ing and acting as well as the artificial intelligence techniques for
planning and learning are described. The performance of the cogni-
tive architecture in a real scenario is assessed in Section 3 and dee-
ply discussed in Section 4. The paper ends with some conclusions
(Section 5).

2. General architecture of the system

Fig. 1 presents a general scheme of the cognitive architecture.
The architecture is composed of a decision-making framework
(DMF), in charge of deciding the action (treatment) to be applied
to the plant, the modules for perception and action, which ground
the symbolic states and actions, respectively, and a KUKA arm
robotic platform equipped with a set of cameras and a probe to
supply water and nutrients.

The DMF receives a description of the plant from the perception
module, which transforms the images captured by the cameras into
a symbolic description of the plant state (e.g. number of leaves, size
of the plant, etc.). The state description is stored in the history data-
base that is used by the decision maker to define which treatment
to apply depending on the previous history of the plant and the
goal specification. The treatment is then sent to the action module
for its actual execution. The history database is also used to learn
which of the past experienced events are actually relevant to pre-
dict the evolution of the plant under a treatment. This is the task of
the learner, which generates and refines planning operators (POs)
containing these relevant events. The system is supported by a
human gardener that specifies the treatment to apply when the
POs learned so far are not enough to make a decision in the current
situation. After the treatment execution, the process starts over
again by generating a new plan from the reached plant state. This
is a strategy known as replanning, which enables the robot to
immediately make use of the new knowledge acquired after the
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