
Toward a more dependable hybrid analysis
of android malware using aspect-oriented
programming

Aisha I. Ali-Gombe a,*, Brendan Saltaformaggio b,
J. “Ram” Ramanujam c, Dongyan Xu d, Golden G. Richard III c

a Department of Computer and Information Science, Towson University, RM 447, 7800 York Road, Towson, MD 21252, USA
b School of Electrical and Computer Engineering, Georgia Institute of Technology, Klaus Advanced Computing Building, 266 Ferst Dr NW,
Atlanta GA 30332, USA
c Center for Computation and Technology, Louisiana State University, 2027-C Digital Media Center, Baton Rouge, LA 70803, USA
d Department of Computer Science, Purdue University, 305 N. University Street, West Lafayette, IN 47907, USA

A R T I C L E I N F O

Article history:

Received 24 March 2017

Received in revised form 2

November 2017

Accepted 5 November 2017

Available online 21 November 2017

A B S T R A C T

The growing threat to user privacy by Android applications (app) has tremendously in-

creased the need for more reliable and accessible analysis techniques. This paper presents

AspectDroid1—an offline app-level hybrid analysis system designed to investigate Android

applications for possible unwanted activities. It leverages static bytecode instrumentation

to weave in analysis routines into an existing application to provide efficient dataflow analy-

sis,detection of resource abuse,and analytics of suspicious behaviors,which are then monitored

dynamically at runtime. Unlike operating system or framework dependent approaches,

AspectDroid does not require porting from one version of Android to another, nor does it

depend on a particular Android runtime, making it a more adaptable and easier to use tech-

nique.We evaluate the strength of our dataflow algorithm on 105 apps from the DroidBench

corpus, with experimental results demonstrating that AspectDroid can detect tagged data

with 94.68% accuracy. Furthermore, we compare and contrast the behavioral patterns in 100

malware samples from the Drebin dataset (Arp et al., 2014) and 100 apps downloaded from

Google Play. Our results showed more traces of sensitive data exfiltration, abuse of re-

sources, as well as suspicious use of programming concepts like reflection, native code, and

dynamic classes in the malware set than the Google Play apps. In terms of runtime over-

head, our experiments indicate AspectDroid can comprehensively log relevant security concerns

with an approximate overhead of 1 MB memory and a 5.9% average increase in CPU usage.

© 2017 Published by Elsevier Ltd.

Keywords:

Hybrid analysis

Bytecode weaving

Instrumentation

Dynamic execution

Android

Malware

Dataflow

1. Introduction

Android malware and over-privileged applications are well-
known for privacy violations and data leakage (Gibler et al.,

2012). For instance, they transfer personal data outside the
devices of end-users without their consent. In a report pub-
lished by GDATA (GDATA Software, 2016), the Android platform
is estimated to account for 97% of all malware on mobile devices
in 2014. Over 2 million trojan applications have been detected

* Corresponding author.
E-mail address: aaligombe@towson.edu (A.I. Ali-Gombe).

1 A poster version of this paper appears in CODASPY 2016 (Ali-Gombe et al., 2016).
https://doi.org/10.1016/j.cose.2017.11.006
0167-4048/© 2017 Published by Elsevier Ltd.

c om pu t e r s & s e cu r i t y 7 3 ( 2 0 1 8 ) 2 3 5 – 2 4 8

Available online at www.sciencedirect.com

journal homepage: www.elsevier.com/ locate /cose

ScienceDirect

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2017.11.006&domain=pdf
mailto:aaligombe@towson.edu
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/COSE


in 2015, representing a 50% increase from 2014. Modern malware
is in use on an industrial scale by crime organizations and its
development is often highly professional. In another report,
Andrubis (Weichselbaum et al., 2014) performed an analysis
on over a million (malicious and benign) apps, and found that
38.79% of the apps have data leakage. The percentage further
increases from 13.45% in 2010 to 49.78% in 2014, and is also
noted by Zhou and Jiang (2012). In many respects, this pres-
ents an even greater threat to users than before, as mobiles
are entrusted with the most private of information and mobile
malware can very effectively spy on users in real time. Overall,
the security and privacy concerns surrounding these revela-
tions increase the need for reliable and accessible app analysis
systems.

Traditionally, Android apps are analyzed using either static
or dynamic approaches. Static analysis involves the use of pre-
determined signatures and/or other semantic artifacts such as
API calls, strings, etc. Enck et al. developed Kirin (Enck et al.,
2009) which evaluates privacy risks based on the set of per-
missions requested, while Felt et al. (2011) and Zhou et al. (2012)
analyzed Android applications by evaluating fine-grained API
calls in addition to the permissions set. Other semantic-
based analysis tools (Feng et al., 2014; Wu et al., 2012) examine
components and intents in addition to the permissions and
API calls made within the application binary.

Dynamic analysis on the other hand executes a target ap-
plication in a contained environment (APIMonitor, 2012; Backes
et al., 2013; Bartel et al., 2012; DroidBox, 2011; Enck et al., 2010;
Falcone et al., 2013; Karami et al., 2013; Rastogi et al., 2013;
Zhang and Yin, 2014a, 2014b). In general, static analysis has
the advantage of high performance and coverage. Conversely,
simple obfuscation can hinder the extraction of important data
such as API names. Dynamic analysis on the other hand pro-
vides a better view of an app’s behavior, although it is usually
limited in scope to observed execution paths.

Most comprehensive dynamic analysis techniques either
require instrumentation of the underlaying operating system
code (DroidBox, 2011; Enck et al., 2010; Rastogi et al., 2013) or
involve virtual machine introspection (Yan and Yin, 2012).They
provide effective sandboxing for the analysis of the target ap-
plications, but unfortunately, such techniques are heavily
dependent on OS versions and the Android runtime. Porting
and flashing a new build on real devices for various versions
of Android are not an easy task, which can limit the number
and kind of applications that can be analyzed. Existing
application-level techniques like those of APIMonitor (2012),
Backes et al. (2013), Bartel et al. (2012), Falcone et al. (2013), and
Karami et al. (2013) are mostly constrained to performing only
API monitoring. Although systems like Capper (Zhang and Yin,
2014a, 2014b) can perform app-level taint analysis, their heavy
reliance on static analysis for the extraction of taint slices makes
it equally vulnerable to simple obfuscation.

In this paper, we present AspectDroid, a hybrid analysis
system for Android applications based on the AspectJ instru-
mentation framework. AspectDroid performs static bytecode
instrumentation at the application level, and does not require
any particular support from the operating system or the Dalvik
virtual machine. It weaves in monitoring code at compile time
using a set of predefined security concerns, such as data/
resource abuse and other non-traditional behaviors like

reflective calls and native code execution. The target applica-
tion is then executed on any Android platform of choice for
which behavioral patterns are monitored and logged
dynamically.

In summary, AspectDroid is a new hybrid analysis system
for Android applications that has the following salient features:

Android Platform Independent: AspectDroid does not intro-
duce code at the operating system level. Instrumented
applications can run without any restrictions on both emula-
tors and physical Android devices.

Adaptable to all Android Runtimes: AspectDroid is not re-
stricted to the Dalvik virtual machine or Android runtime (ART).

Explicit Data Exfiltration: AspectDroid uses an efficient algo-
rithm to track data propagation dynamically from source to
sink.

Behavioral Tracing: We monitor applications for possible un-
wanted activities like telephony abuse, use of reflection,
dynamic classes, and native code execution.

To determine the effectiveness and efficiency of AspectDroid,
we carry out two different tests. In the first experiment, we
analyze 105 Android apps from the DroidBench project for pos-
sible data exfiltration. The results show that the AspectDroid
dataflow algorithm can accurately follow the propagation of
target data from source to sink with 94.68% F-score accuracy.
The second experiment analyzes the dynamic behavior of 100
malware samples from Drebin’s dataset (Arp et al., 2014) and
100 apps downloaded from Google Play. Our findings are item-
ized based on data exfiltration, use of reflection, dynamic class
loading, native code, and telephony abuse. The results of our
analysis indicate that while phone-related data like IMEI are
equally exfiltrated in both malware and the Google Play apps,
that’s not the case for user-related data like contacts where
leak traces were more common in malware samples than the
Google Play apps. Five malware samples use reflection for ma-
licious purposes, such as invoking the methods of a background
service to spoof user accounts and passwords. On the other
hand, all the reflective call invocations in the Google Play
samples did not result in any sensitive API call. Furthermore,
we have seen more telephony abuse in malware than the Google
Play apps, e.g., SMS was sent to all contacts on the phone
without the user’s consent. Nine malware samples invoke native
processes 72 times, as compared to 6 for the Google Play apps.

We further use the malware dataset to measure the instru-
mentation overhead for dynamic execution. The results show
that AspectDroid has limited memory overhead of around 1 MB
and a reasonable 5.9% average CPU usage overhead.

The rest of the paper is organized as follows: Section 2 pres-
ents background on the AspectJ instrumentation framework;
Section 3 provides an overview of AspectDroid’s design and as-
sociated algorithms; Section 4 presents the implementation of
AspectDroid; Section 5 contains testing and evaluation of results;
Section 6 enumerates some challenges and discusses limita-
tions and future work; Section 7 reviews the related literature
followed by Section 8 that concludes the paper.

2. Background

Instrumentation is the process of analyzing programs by adding
trace code to their source code, binary code, or execution

236 c om pu t e r s & s e cu r i t y 7 3 ( 2 0 1 8 ) 2 3 5 – 2 4 8



https://isiarticles.com/article/158660

