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• An overview of joint modeling of behavioral and neural data.
• A joint modeling account of mental rotation behavioral data and ERP data.
• A formal comparison of several joint modeling alternatives.
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a b s t r a c t

Recent decades have witnessed amazing advances in both mathematical models of cognition and in
the field of cognitive neuroscience. These developments were initially independent of one another, but
recently the fields have started to become interested in joining forces. The resulting joint modeling of
behavioral and neural data can be difficult, but has proved fruitful.We briefly review different approaches
used in decision-making research for linking behavioral and neural data, and also provide an example.
Our example provides a tight link between behavioral data and evoked scalp potentials measured
during mental rotation. The example model illustrates a powerful hypothesis-driven way of linking such
data sets. We demonstrate the use of such a model, provide a model comparison against interesting
alternatives, and discuss the conclusions that follow from applying such a joint model.

© 2016 Elsevier Inc. All rights reserved.

Like many areas of scientific enquiry, cognitive psychology
began with verbally-specified theories and gradually progressed
to quantitative accounts over time. This resulted in mathematical
models to describe memory (e.g., Atkinson & Shiffrin, 1968;
Raaijmakers & Shiffrin, 1981), categorization (e.g., Nosofsky,
1986; Nosofsky & Palmeri, 1997), speeded and unspeeded
decision making (e.g., Ratcliff, 1978; Wagenmakers, 2009), and
many other paradigms (for reviews, see Lee & Wagenmakers,
2013; Lewandowsky & Farrell, 2010). A separate and at first
mostly unrelated development was the advent of cognitive
neuroscience. This field sought to map changes in the brain as
they related to cognition, using neural measurements obtained
through event-related potentials (ERPs; e.g., Hillyard, Hink,
Schwent, & Picton, 1973; Sutton, Braren, Zubin, & John, 1965),
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the magnetoencephalogram (MEG; e.g., Brenner, Williamson, &
Kaufman, 1975), functional magnetic resonance imaging (fMRI;
e.g., Belliveau et al., 1991), and single-unit recordings in non-
human primates (e.g., Hanes & Schall, 1996; Schall, 2001; Shadlen
& Newsome, 1996). As progressively more precise measures of
the inner workings of the brain became available, researchers
have become increasingly capable at understanding the neural
determinants of cognitive processes.

Some research paradigms have well-specified and tractable
mathematical models of cognition, and also well-developed
methods for neural measurement, for example, simple decision-
making and reinforcement learning. Researchers interested in
such paradigms started investigating ways to link the neural
and behavioral data more carefully. The latest developments
include so-called joint models, in which data of one kind can
inform the model fit of the other kind and vice versa (e.g.,
Anderson & Fincham, 2014; Purcell et al., 2010; Turner, Forstmann,
Love, Palmeri, & van Maanen, in press; Turner, Forstmann
et al., 2013). These accounts aim for the most explicit and
careful links, by simultaneously modeling neural recordings and
behavioral outputs, allowing both kinds of data to inform model
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selection and parameter estimation. Joint modeling provides an
important theoretical contribution: it allows a researcher to
examine common denominators underlying both behavioral data
and neural data.

In this paper, we provide an example of how to jointly model
behavioral and neural data from simple decision-making. As
an illustrative example, we apply a joint model of behavioral
responses and EEG recordings to data from an experiment based
on the classic Shepard–Metzler mental rotation task (Shepard &
Metzler, 1971). However, before describing the model, we review
different approaches to linking behavioral and neural data, with a
focus on decision-making research.

An important change in the development of decision-making
models over the past twenty years has been a steady ‘‘tightening’’
of the link between neural and behavioral data (for reviews
and discussion of linking behavioral and neural data, see Teller,
1984). Early models of simple decision-making linked behavioral
and neural data loosely, by constraining the development of
behavioral models to respect data from neural measurements.
For example, the leaky competing accumulator model developed
by Usher and McClelland (2001) was structurally constrained to
include components supported by neural investigations, such as
lateral inhibition between accumulating units, and passive decay
of accumulated evidence. These links were included as part of the
model development process, and thereafter there was no further
attempt to link neural with behavioral data.

Subsequentmodels tested the links via qualitative comparisons
between predictions for corresponding neural and behavioral data
sets. This kind of linking was very common in early research into
decision-making with fMRI methods, in which predictions were
based on the assumption that an experimental manipulation will
influence one particular model component, which leads naturally
to predictions for the behavioral data, and also for the neural
data (via the hypothesized link). Predictions most frequently take
the form ‘‘in condition A vs. B, behavioral measure X should
increase while neural measure Y decreases’’. Support for the
predictions is taken as evidence in favor of the model, including
the hypothesized link. As an example, Ho, Brown, and Serences
(2009) tested predictions generated from decision-makingmodels
via hypothesized neural links. In one part of their study, Ho
et al. manipulated the difficulty of a decision-making task and
hypothesized that this should result in a change in the speed
of evidence accumulation in a sequential sampling model. By
examination of the model coupled to a standard model for
hemodynamic responses, Ho et al. generated predictions for the
blood–oxygen-level dependent (BOLD) response profile within
regions that are involved in perceptual decision making. These
predictions were compared with data from an fMRI experiment,
which lent support to some accounts over others.

Linking via the testing of qualitative hypotheses was later sur-
passed by quantitative approaches, which provided a tighter link
between neural and behavioral data. The most common example
of quantitative linking in decision-making models takes param-
eters of the decision-making model, estimated from behavioral
data, and compares them against the parameters of a descriptive
model estimated from the neural data. For example, Forstmann
et al. (2008) correlated individual subjects’ model parameters, es-
timated from behavioral data, against blood–oxygen-level depen-
dent (BOLD) parameter estimates; subjects with large changes in
threshold parameters also showed similarly large changes in BOLD
responses.

Most recently, there have been efforts to link neural and
behavioral decision-making data even more tightly, by combining
both data sets in a single model-based analysis. This approach
has culminated in models such as that developed by Purcell et al.
(2010) which uses neural measurements as a model input in order

to predict both behavioral measurements and a second set of
neural measurements. This provides a simultaneous description of
neural and behavioral data sets, as well as explicating the links
between them. A less detailed, but more general approach was
developed by Turner, Forstmann et al. (2013) and extended by
Turner et al. (in press) in this volume. In their method, neural
and behavioral models are joined by allowing their parameters to
covary. Turner, Forstmann, et al.’s approach is a ‘‘joint’’ model, in
the sense that it allows symmetric information flow: behavioral
data can influence the neural parameter estimates, and neural
data can influence the behavioral parameter estimates. This
information flow is achieved via a covariance matrix for the model
parameters. This structure allows the identification of covariance
between model parameters associated with neural processes and
model parameters associated with behavioral processes. However,
Turner, Forstmann, et al.’s approach differs from our analyses in its
focus. The covariancematrix of Turner, Forstmann, et al.’s approach
means that any and all parameters of the behavioral model are
allowed to link with any and all parameters of the neural model,
although all these links are required to be linear. Our approach
is less general, but more pointed, because it requires the specific
instantiation of a single, precise link between one parameter of the
neural model and one parameter of the behavioral model.1

The joint modeling approach of Turner, Forstmann et al. (2013)
is complementary to the approach we use. For paradigms in which
there exist precise hypotheses about the links between neural
and behavioral models, our approach offers a straightforward way
of instantiating and testing these hypotheses. For paradigms in
which this is not the case, Turner, Forstmann, et al.’s approach
offers a powerful tool for exploration. What both approaches
have in common is that they jointly fit the neural and behavioral
data, which allows behavioral data to influence parameters on the
‘‘neural side’’ of the model, and vice versa. A joint model in this
sense is able to identify a compromise between the two streams of
data. This means that, compared to an otherwise-identical model
that is fit solely to the behavioral (or neural) data, a joint model
will always fit more poorly. Coherently managing the compromise
between fitting neural and behavioral data streams is a strength
of the joint modeling approach. For example, suppose one was
examining a joint model for behavioral and neural data, but was
not fitting the model in a ‘‘joint’’ manner. Instead, imagine the
model was examined by fitting first to behavioral data alone,
and then later evaluating the model by comparing its subsequent
predictions for neural effects against the neural data. One problem
with this approach arises if the model had two sets of parameters
(say, A and B) which both provided very good fits to the behavioral
data, but very different fits to the neural data. Suppose that
parameter set A provided slightly better behavioral fits, but also
terrible neural fits, while parameter set B provided good fits to
the neural data. Fitting to the behavioral data alone would lead
the researcher to choose parameter set A, and then to reject the
model because of the terrible fit to neural data. Joint fitting allows
identification of compromise parameters (such as set B) which
provide good fits to both data streams.

The two-stage approach to model evaluation, in which the flow
of information between the two types of data is mostly one-way,
was employed by Purcell et al. (2010) (they used two different
neural data streams, only one of which was a fitting target). While
we hope that a joint modeling approach has some strengths that
the two-stage approach does not, Purcell et al.’s work included

1 While it is true that Turner, Forstmann, et al.’s method could, in theory,
be restricted to produce our approach (e.g. by setting almost all priors on the
covariance matrix components to zero, and by adding in nonlinear parameter link
functions) in practice this has not been done.
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