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A B S T R A C T

Recent evidence suggests that observers can grasp patterns of feature variations in the environment with sur-
prising efficiency. During visual search tasks where all distractors are randomly drawn from a certain dis-
tribution rather than all being homogeneous, observers are capable of learning highly complex statistical
properties of distractor sets. After only a few trials (learning phase), the statistical properties of distributions -
mean, variance and crucially, shape - can be learned, and these representations affect search during a subsequent
test phase (Chetverikov, Campana, & Kristjánsson, 2016). To assess the limits of such distribution learning, we
varied the information available to observers about the underlying distractor distributions by manipulating set
size during the learning phase in two experiments. We found that robust distribution learning only occurred for
large set sizes. We also used set size to assess whether the learning of distribution properties makes search more
efficient. The results reveal how a certain minimum of information is required for learning to occur, thereby
delineating the boundary conditions of learning of statistical variation in the environment. However, the benefits
of distribution learning for search efficiency remain unclear.

How do observers represent the variation in the environment such
as the colors in a moss-covered lava field or the brightness distribution
in snow covered landscapes? Although we may think of moss as “green”
and snow as “white”, we clearly perceive more than a single feature
value. On the other hand, encoding every feature at every location
along with their conjunctions will require a lot of resources. The
question is then how feature variation in the external world is trans-
lated into a representation, and the answer will likely be somewhere
between the two extremes outlined above. Processing of such hetero-
geneous perceptual ensembles has been studied with texture segrega-
tion tasks (Julesz, 1981) but natural sets are typically not as regular as
those studied by Julesz. Take color – color variation in natural en-
vironments is rarely uniform – and neither are the oriented edges
available in natural statistical distributions. There is accumulating
evidence that human observers can extract summary statistics such as
the mean and standard deviation of a number of features, such as color,
size, orientation and brightness, from stimulus sets having a certain
variability (Alvarez, 2011; Ariely, 2001; Corbett &Melcher, 2014;
Haberman &Whitney, 2012; Michael, de Gardelle, & Summerfield,
2014; Rosenholtz, Huang, Raj, Balas, & Ilie, 2012; Utochkin, 2015).

Summary statistics provide a concise way of representing feature var-
iation but they are still relatively coarse because two different en-
sembles might have the same statistics while coming from different
distributions.

Our recent experiments have revealed that observers can represent
more intricate feature variation than studies of simple statistical para-
meters have suggested. Chetverikov, Campana, and Kristjánsson
(2017b) showed that after only a few trials observers can learn the
properties of feature distributions of colored distractors in an odd-one-
out visual search task over and above the mean and standard devia-
tions, and in Chetverikov, Campana, and Kristjánsson (2016, 2017a),
we found similar results for orientation. In those studies, assessed ob-
servers’ representations by measuring their implicit expectations of
upcoming stimulus distributions with response times (RTs) instead of
explicit judgements of distribution properties. Namely, we measured
effects of 'role-reversals' between targets and distractors on visual
search performance (Kristjánsson & Driver, 2008). A role-reversal oc-
curs when a target on a preceding trial becomes a distractor on the next
trial, or vice-versa, which typically slows search (Becker, 2010). This
effect is not limited to specific feature domains and seems to reflect
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encoding of distractors in implicit short-term visual working memory
(Carlisle & Kristjánsson, 2017; Lamy, Antebi, Aviani, & Carmel, 2008;
Maljkovic & Nakayama, 1994). In a typical role-reversal study, the
distractors are homogeneous. For example, in a color search observers
would look for a red target among green distractors. After a few trials
with repeated distractor colors observers encode the distractor features,
and when the targets become green (among distractors of some other
color), search is slowed. The key difference in our manipulation relative
to previous studies was that distractors were heterogeneous and on a
single trial their features were randomly drawn from a specific prob-
ability distribution. The distractors, in other words, formed a perceptual
ensemble. Continuing with the example above, instead of a red target
among green distractors, observers had to search for a red target among
distractors of varying degrees of “greenness”, akin to searching for a red
berry within moss patches. Then, as these conditions were repeated for
a few trials, a role-reversal to a greenish target resulted in slowed
search. Importantly, the degree of slowing depended on the corre-
spondence between target hue and the probability of that particular hue
among previous distractors. This allowed us to assess observers’ re-
presentations of ensembles encoded on previous search trials.

We assumed, in other words, that if a target falls within observers’
representations of preceding distractor distributions it would cause
role-reversal effects, that is, search would be slower because the fea-
tures of the odd-one-out target would clash with representations of
distractor distributions from previous trials (Chetverikov et al., 2016,
2017a,b). Using targets corresponding to different parts of previously
learned distractor distributions allows us to infer the probabilistic re-
presentation of that distribution by assessing how much search is
slowed. For example, following several odd-one-out search trials in the
orientation domain with distractors drawn from a truncated Gaussian
distribution with an orientation µ= 45° and σ=15° (range restricted
to 45 ± 30°), observers respond more slowly when a 45° odd-one-out
target suddenly appears than when a 40° target appears, which, in turn,
will yield longer response times than a 35° target, and search will be
fastest for targets that fall outside the range of the previous distractor
distribution. The search RTs will therefore be slow if observers expected
this orientation to be from the distractor distribution of immediately
preceding trials. The degree of slowing reflects encoded feature prob-
ability. By repeating blocks of learning and test trials with different test
targets, we were able to “probe” observers’ representations of feature
distributions along the whole range of possible feature values and ob-
tain detailed continuous estimates of these representations.

Importantly, we also found that even when two distributions have
the same range or variance, observers’ representations differ
(Chetverikov et al., 2016). So in contrast to a Gaussian distribution,
following learning of a uniform distribution with the same 45° mean
and±30° range, response times (RTs) for any target within 45 ± 30°
degrees will be approximately the same. That is, even the shapes of the
distributions (e.g., whether they are Gaussian, uniform, skewed or even
bimodal) are encoded (Chetverikov et al., 2016, 2017a). Differences in
the estimates for differently shaped distributions suggest that the pre-
cision of ensemble perception is much higher than was thought before.

1. Mechanisms of ensemble perception

How do observers obtain such precise ensemble representations
from the stimuli presented on the screen? Recent studies involving
explicit summary statistic judgements indicate that the aggregation is
limited by the number of stimulus subsets rather than the number of
stimuli within a subset (Attarha, Moore, & Vecera, 2014; Im &Halberda,
2013; Maule & Franklin, 2015; Utochkin & Tiurina, 2014;
Utochkin & Yurevich, 2016). But the exact mechanisms of aggregation
within subsets remain controversial. Several studies support the idea of
limited sampling (Maule & Franklin, 2016; Myczek & Simons, 2008;
Solomon, May, & Tyler, 2016; Tibber et al., 2015) with the number of
sampled stimuli being below four. That is, observers can respond

accurately when asked about summary statistics even if they analyse
only a few exemplars from the stimulus set. Others have argued against
this, however (Attarha &Moore, 2015; Attarha et al., 2014; Dakin,
2001; Im&Halberda, 2013; Tokita, Ueda, & Ishiguchi, 2016;
Utochkin & Tiurina, 2014). Moreover, approximations involved in ex-
plicit averaging may differ from tasks where the use of statistics is not
explicitly required but might nevertheless be useful or even necessary.
Such tasks may include visual search (Rosenholtz et al., 2012), visual
categorization (Utochkin, 2015), attentional selection (Im,
Park, & Chong, 2015), or texture perception (Dakin, 2015). In parti-
cular, distribution learning in visual search (Chetverikov et al. (2016) is
not required by the task and therefore allows the study of mechanisms
involved in incidental use of summary statistics.

The use of explicit judgments about the properties of feature dis-
tributions in previous studies limits our understanding of the mechan-
isms leading to ensemble representations. It is possible that potential
bottlenecks on the precision of such explicit judgments have little to do
with distribution representations per se. There are a number of ways in
which even if observers have highly precise representations of dis-
tributions, explicit judgments will still rely on only a few samples. For
example, observers might use their representation to generate a limited
sample for explicit judgements. That is, when asked to judge the mean,
observers might simply sample the distributions they saw. Another
option is that, during an averaging task, observers’ might try to hold in
working memory only the stimuli useful for the averaging they are
asked to perform. Using tasks with incidental encoding would be
helpful to understand whether limitations found in some studies for
explicit averaging are related to ensemble encoding or simply reflect
the use of explicit judgements.

Regardless of the mechanisms underlying explicit averaging, in-
cidental distribution encoding within the present paradigm is of interest
by itself. Previous results indicate that distribution representations that
observers use in visual search are more precise than, for example, those
that can be derived from forced-choice judgements (see review in
Chetverikov et al., 2016). How this higher precision is obtained is an
interesting question in and of itself, one we investigate here.

Our previous results indicate that distribution learning in visual
search can occur rapidly (Chetverikov et al., 2017a). Sometimes only
two trials seem to be needed to learn simpler distributions, while
learning a more complex (bimodal) distribution required a larger
number of search trials and involved a gradual change from a unimodal
to a bimodal representation. This shows that distribution representa-
tions can be based on the accumulation of information coming from
multiple samples – otherwise the representation would be the same
regardless of trial number. But how many samples are needed from a
single display is unknown. For example, on a given trial observers may
sample three or four items (Maule & Franklin, 2016; Myczek & Simons,
2008; Solomon et al., 2016) and then integrate the samples from dif-
ferent trials.

Here we used set size manipulations to investigate the limits on
processing of simultaneously presented information during feature
distribution learning. If learning of distribution parameters is based on
a few stimuli sampled from each trial, the learning should be equally
efficient with small and large set sizes. On the other hand, if the
learning is based on an aggregation (possibly, in parallel) of a large
number of stimuli, larger set sizes would result in better learning.

2. Role of set size for search efficiency and inter-trial priming

Set size manipulations have played a key role in theories of visual
attention. For easier searches where the target is easily found among
distractors, RTs are constant with set size, or can even decrease
(Bravo &Nakayama, 1992; Kristjánsson, 2015; Wang,
Kristjánsson, & Nakayama, 2005; Wolfe & Horowitz, 2017). Using this
classic manipulation may therefore also reveal whether and how dis-
tractor distribution learning affects search performance more generally.
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