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A B S T R A C T

In this paper, we propose an adaptive randomization design for Phase 2 dose-finding trials to optimize Net
Present Value (NPV) for an experimental drug. We replace the traditional fixed sample size design (Patel, et al.,
2012) by this new design to see if NPV from the original paper can be improved. Comparison of the proposed
design to the previous design is made via simulations using a hypothetical example based on a Diabetic
Neuropathic Pain Study.

1. Background

The accelerated use of adaptive design in clinical trials has provided
drug research and development a more flexible and effective approach
to better distributing resources and fitting patients' needs. The increas-
ing popularity of the adaptive design has led to a number of successful
launches of new medications.

Comparing to a fixed arm design, an adaptive design allows better
evaluation of the dose-response profile with a given sample size
especially under the circumstance when only one Phase 2 study will
be conducted before heading to Phase 3 and hence several dose levels
need to be tested in the Phase 2 study. An adaptive design also provides
balance between required sample size and study feasibility/costs
offering opportunity to stop “early” based on the futility or success
criteria. For example, a traditional parallel arm dose-ranging neuro-
pathic pain study with 3 dose levels (6 mg/12 mg/18 mg) of an
experimental drug (ED) requires sample size of> 400 subjects, which
would be challenging in terms of both time for full enrollment and
related expenses. In contrast, an adaptive randomization study with the
same sample size allows for inclusion of additional interim dose levels
(9 mg and 15 mg). Or adopting an adaptive design will result in a
significant reduction in sample size if fewer doses are tested. Moreover,
an adaptive design offers enhanced characterization of the dose-
response profile and hence provides more informed dose selection for
Phase 3 trials and actual safety information at potential Phase 3 dose

levels.
Nevertheless, the extensive adaptive design research mainly focuses

on the logistics of the trial itself lacking the global view which should
incorporate both drug innovation and finance considerations. With the
high availability of approved medications on market across almost all
therapeutic areas these days, a successful launch of a new medication
does not merely rely on its efficacy and safety, but marketing and
financial considerations also play a definitive decisive role. In other
words, in clinical trials, cost-effectiveness is crucial in optimizing the
study design. A variety of researchers have contributed their work to
this topic. Patel and Ankolekar [6] introduced a Bayesian approach to
incorporate economic factors in sample size determination and design
for clinical trials and portfolio of drugs. Burman et al. [2] proposed a
decision analytic approach to calculate the sample size from a
perspective of maximizing company profits. Mehta and Patel [5] used
net revenue and net present value (NPV) for sample size re-estimation
in confirmatory trials. Patel et al. [7] expanded the NPV concept to
design a Phase 2 trial choosing a dose selection method and planning
future Phase 3 trials. In their paper they used a traditional fixed sample
size design to optimize expected net present value (eNPV) of the
product. Our paper is an extension of their work. In this paper, we
introduce an adaptive design to optimize the probability of Phase 3
success and eNPV of an ED for diabetic peripheral neuropathic pain. We
replace the tradition fixed sample size Phase 2 dose-finding design used
in Patel et al. [7] with an adaptive randomization design and evaluate
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the impact of several Phase 2 design features on the probability of
Phase 3 success and the eNPV.

2. Introduction on neuropathic pain trials

We demonstrate the ideas and considerations by designing a Phase 2
neuropathic pain dose-finding trial as an illustration. The design frame
and process that we propose can be easily generalized to studies in
other therapeutic areas.

2.1. Efficacy endpoints

The neuropathic pain is a complex and chronic condition that is
usually caused by damaged or dysfunctional nerve fibers sending wrong
signals to the somatosensory system. The efficacy measure for the
considered neuropathic pain study is the patient reported Numeric
Rating Scale (NRS) ranging from 0 to 10 where 0 represents no pain and
10 represents severe pain. The primary efficacy endpoint is the average
of NRS over a certain period of time prior to a scheduled study visit,
typically 4 to 7 days. The pain intensity is recorded and monitored
periodically. A typical Phase 2 neuropathic pain study's duration is
usually 12 weeks.

2.2. Safety

As compared to efficacy, safety might be more challenging to be
explicitly expressed due to various types and severity of adverse events
(AEs). To quantify safety so that it can be taken into consideration
during the design phase, we simplify and evaluate safety as the non-
tolerability rate representing the frequency and severity of AEs emerged
with the ED of neuropathic pain. The non-tolerability will raise
concerns on the safety of the ED and will have impact on the final
Go/No-Go decision. However, they will not be counted in early
stopping for either failure or success.

3. Key concepts of a cost-effective adaptive design

3.1. Dose-response models for efficacy

We model the dose-response curve with a normal dynamic linear
model (NDLM) [1]. The NDLM is a flexible and robust model for
capturing non-monotonic curves. Let i = 1, …, k be the subject indices.
Let subject i have dose di = 0, 1, …, D, in which the placebo control is
labeled as d = 0, the active comparator is labeled as d = D, and in-
between are ED doses. The amount of dose for di = d is denoted as νd,
where d = 0, 1, …, D. Denote Yi as the change from the baseline to the
endpoint in the response. Assume θd is the mean response for Yi for dose
di = d. The following error structure is assumed for Yi:

Yi ~ θd + N(0, σ2).
The prior distribution for the first ED dose, d = 1, is θ1~N(μ1,υ12),

and
θd~N(θd−1,τd−1

2) for d = 2,…, D − 1,where τd2=τ2(vd+1−vd).
The prior distribution for the “drift” parameter in the NDLM is
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The prior distribution for the error term is
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where σμ and τμ are the prior means for σ and τ, and σn and τn are means
of σ and τ that are based on n observations. The gamma distribution is
given by.
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The placebo control is modeled separately with prior distribution

θ N μ υ~ ( , ).0 0 0
2

The active comparator is also modeled separately with prior
distribution

θ N μ υ~ ( , ).D D D
2

Of note, we leverage and implement inverse gamma (IG) as the prior
distributions for variances. The choices of parameters for the IG prior
distributions shall be carefully considered as they can have impacts on
inferences drawn from posterior distribution as pointed out by Gelman
[3].

3.2. Longitudinal models for efficacy

We design the trial with multiple visits instead of a single visit at a
fixed time after randomization. Then, a longitudinal model will be
employed to enable final observations to be imputed for those subjects
that only have intermediate responses. Separate longitudinal models
might be fitted to various doses. Nevertheless, the models should be in
the same form but can have different parameter values (e.g. one set of
parameters for placebo arm and a different set for the ED arms). The
same priors can be used for all models.

We use the simple linear regression model to accommodate the
correlation between final observations and intermediate responses. A
common model is used for each ED dose and a separate model for the
placebo and one for the active comparator arm.

The primary end point is modeled as:

Y y α β y N λ~ + + (0, ),i it t t it t
2

where t is the visit number, yit is the response at visit t and α, β and λ
have the priors:
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3.3. Safety evaluation

As mentioned in Section 2.2, safety is quantified and expressed as
overall non-tolerability rates. Non-tolerability rates commonly increase
as the dose is up-titrated. Non-tolerability rates should be approximated
based on historical data or reliable sources such as notable publications
or agencies' guidance. Table 1 displays three common safety scenarios
in terms of overall non-tolerability rates.

3.4. Clinically significant minimum utility for both efficacy and safety
(CSMU)

To take efficacy and safety into account for decision making

Table 1
Three sample safety profiles.

Safety scenario dose

Placebo Low dose Medium dose High dose AC

Low 10% 10% 15% 20% 17.5%
Moderate 10% 15% 20% 30% 20%
High 10% 20% 30% 40% 35%
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