
DFRWS 2017 Europe d Proceedings of the Fourth Annual DFRWS Europe

Characterizing loss of digital evidence due to abstraction layers

Felix Freiling a, *, Thomas Glanzmann b, **, Hans P. Reiser c, ***

a Department of Computer Science, Friedrich-Alexander-Universit€at Erlangen-Nürnberg (FAU), Martensstr. 3, 91058 Erlangen, Germany
b Rathsberger Str. 28, 91054 Erlangen, Germany
c Faculty of Computer Science and Mathematics, University of Passau, Innstraße 43, 94032 Passau, Germany

a r t i c l e i n f o

Article history:
Received 26 January 2017
Accepted 26 January 2017

Keywords:
Abstraction layer
Virtualization
Forensic analysis
File system
Virtual memory

a b s t r a c t

We study the problem of evidence collection in environments where abstraction layers are used to
organize data storage. Based on a formal model, the problem of evidence collection is defined as the task
to reconstruct high-level from low-level storage. We investigate the conditions under which different
levels of evidence collection can be performed and show that abstraction layers, in general, make it
harder to acquire evidence. We illustrate our findings by describing several practical scenarios from file
systems, memory management, and disk volume management.
© 2017 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Abstraction layers are a ubiquitous concept inmodern computer
systems. Like in computer networks (Tanenbaum, 2002) or file
systems (Carrier, 2005), they usually come as a hierarchy where
resources on a “higher” layer of abstraction are mapped to a set of
resources on a “lower” layer of abstraction. Abstraction layers
usually come with the benefit of isolation and more efficient
resource usage stemming from separation of concerns.

When accessing upper layers, however, details of lower layers
are “hidden”. This observation is relevant to the process of evidence
collection for forensic purposes: It is usually easier to establish the
authenticity of digital evidence when it is accessed at lower layers
of abstraction, but the items of interest are at higher levels of
abstraction. Therefore, the items need to be reconstructed taking
one abstraction layer at a time. But every abstraction layer in-
troduces ambiguity and the possibility of interpretation errors
(Casey, 2011). Even worse, sometimes it is impossible to access the
lower layer because it is physically out of reach, such as in many
cloud computing environments (Roussev et al., 2016).

Loss of digital evidence due to abstraction layers

Given modern systems with complex hierarchies of abstraction
layers, we ask the following question: Under which conditions is it

possible to reconstruct higher levels of abstraction from data given
at lower layers of abstraction? This question may appear trivial at
first sight since all evidence that exists at the higher abstraction
layer must also exist on the lower layer. However, from a digital
forensics point of view we not only target actively used data but
also deleted or otherwise unused data. This includes fragments of
deleted files or the remains of process data structures in unused
parts of physical memory. Not being able to interpret the data at the
lower layer means thatdat least from the viewpoint of the forensic
expertdsuch data is “lost” through abstraction. Furthermore, there
are many examples where abstraction layers combined with
concurrency (as in the case of virtualization) may change data at
the lower layer in ways that do not exist without abstraction. One
example is resource pooling in cloud data centers: disk space that is
not used by one virtual machine may be re-allocated to another
virtual machine and overwritten, which may destroy evidence at
higher layers. Our aim, therefore, is to better understand the
different ways in which digital evidence is lost due to abstraction
layers.

Related work

The concept of abstraction underlies most techniques to build
computer systems. Many early software and hardware engineering
techniques are based on functional (or code) abstraction, as
for example in structured programming with stepwise refinement.
Later, data abstraction became a major paradigm for the
construction of software systems, for example in object-oriented
programming or other types of current formal modeling
languages.

* Corresponding author.
** Corresponding author.
*** Corresponding author.

E-mail addresses: felix.freiling@cs.fau.de (F. Freiling), thomas@glanzmann.de
(T. Glanzmann), hans.reiser@uni-passau.de (H.P. Reiser).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/d i in

http://dx.doi.org/10.1016/j.diin.2017.01.012
1742-2876/© 2017 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Digital Investigation 20 (2017) S107eS115

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:felix.freiling@cs.fau.de
mailto:thomas@glanzmann.de
mailto:hans.reiser@uni-passau.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2017.01.012&domain=pdf
www.sciencedirect.com/science/journal/17422876
www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2017.01.012
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.diin.2017.01.012
http://dx.doi.org/10.1016/j.diin.2017.01.012

Abstraction layers are not only a basic principle of constructing
computer systems but also to reason about them. This is apparent
in the area of (formal) verification where abstraction layers have
been investigated in great depth. Formally, an abstraction layer
relates to two system descriptions, one at a higher layer and one at
a lower layer. Proving that the lower layer “implements” the higher
layer, requires to map the state space (and therefore also the exe-
cutions) of the lower layer to the higher layer. This can be done by
constructing a refinement mapping (Abadi and Lamport, 1991) be-
tween the two layers.

The relations between “primitive” and “complex” event se-
quences were also influential to early attempts to formalize (digital)
investigative techniques. For example, Carrier introduces the idea
of constructing analysis tools along the abstraction levels of com-
puter systems (Carrier, 2003). Later, Carrier and Spafford introduce
abstraction transformation functions (Carrier and Spafford, 2006, p.
S126) that allow the formulation high-level hypotheses and map-
ping them to low-level system operations. This is done to structure
the area of investigative techniques and not to study the eventual
loss of evidence through abstraction.

As early as 2010 it was observed that abstraction in form of
virtualization poses problems to incident handling and forensics
(Grobauer and Schreck, 2010). Similarly, Martini and Choo (2012)
embed these issues into a process model framework for the
forensic analysis of cloud computing platforms.

Birk and Wegener (2011) and later Kolb (2012) raised many
detailed technical issues in the context of virtual machine analysis,
especially the problem of correct resource attribution under
resource pooling. Dykstra and Sherman (2012) investigated the
problems of recovering deleted files or processes from memory in
cloud computing environments. Zawoad and Hasan (2016a, 2016b)
take a different approach and design an environment to aid in the
forensic analysis of cloud systems.

Roussev and McCulley (2016) recently characterized the
reason for problems in cloud forensic analysis, namely cloud-
native artifacts. These artifacts encompass evidence that can only
be acquired by physical access to the server, thereby pointing to
a fundamental limitation of evidence collection in virtualized
environments. While it is well-known that evidence collection
on higher layers for multiple reasons is usually inferior to
collection at lower layers, little research has been done to
characterize the information loss that results from having
abstraction layers at all.

Contributions

We approach the research question using a formal model and
derive conditions describing certain types of evidence collection for
different conditions. The model covers systems that use abstraction
layers to organize block-based storage. Based on our model, we
derive conditions enabling the reconstruction of active and inactive
data at lower layers. We can show, that these conditions are only
partly satisfied by real data structures and that therefore data is
“lost” through abstraction.

Our model formalizes page-based or block-based storage ab-
stractions that may be fragmented or not. API-based storage ab-
stractions like network file systems are excluded, because they
hide state information. A further issue of the paper concerns
reconstructing state instead of computation. The term storage is
used to describe content of volatile physical memory as well as
persistent physical disks alike, i.e., main memory and disks do not
have to be distinguished. Our formalization covers a wide range of
relevant data organization techniques like file systems, virtual
memory, guest physical memory, logical volumes, and RAID
systems.

Paper outline

We present our model of abstraction layers in Section “Model”,
definitions of different evidence collection and reconstruction tasks
in Section “Forensic reconstruction problems”, the illustration of
these classes using practical examples in Section “Abstraction
layers in practice”, and, finally, our conclusions in Section
“Conclusions”.

Model

Layers

We consider a single level of abstraction at a time, and for each
level we distinguish two layers, the upper layer and the lower layer.
Each layer provides computation and storage resources. However,
the upper layer is implemented using resources from the lower
layer.

Storage

We consider a block-based storage abstraction (storage can be
either memory or disk). Both layers consist of a finite ordered
sequence of storage blocks, but blocks can be of different sizes and
sequences can have different lengths in both layers. More precisely,
on the lower layer, wemodel storage as a finite ordered sequence of
storage blocks l[0],l[1],…,l[n], and on the upper layer we model
storage similarly as a finite ordered sequence of storage blocks u
[0],u[1],…,u[m]. Each storage block is identified by a unique index,
where L indicates the range of indexes into l, i.e., the set {0,…,n},
and U the range of indexes into u, i.e., the set {0,…,m}. Note that m
must not necessarily be equal to n, and that our model can be used
to “simulate” multiple block sequences on both upper and lower
layers.

Mappings

Between upper and lower layers exists an entity that manages
the lower storage so that upper storage is available at the upper
layer. This entity uses a management data structure to map the set
of upper storage blocks to lower storage blocks over time. In our
model, this structure can map any subset of blocks in u to any
subset of blocks in l. Since the mapping is time dependent, we need
to model its evolution over time. For simplicity, we use the set of
natural numbers as time domain, i.e., T ¼ {0,1,2,…}. We then
formally model the mapping at a certain time t2T as a relation
4t4U � L that associates elements of u to elements of l, i.e.,
ðx; yÞ24t iff u[x] is mapped to l[y] at a certain time t.

The definitions are illustrated in Fig. 1 where the assignment of
blocks from u to blocks from l are depicted at a certain point in time
t. Accordingly, at time t, upper layer block 1 (u[1]) is mapped to
lower layer block 1 (l[1]). Furthermore, upper layer blocks u[2] and
u[5] are both mapped to lower layer block l[4], and u[7] is mapped
to l[8] and l[11].

Fig. 1. Model of storage on different abstraction layers and mappings between layers at
time t.

F. Freiling et al. / Digital Investigation 20 (2017) S107eS115S108

https://isiarticles.com/article/159519

