
Information Systems 72 (2017) 179–204

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Scalable and queryable compressed storage structure for raster data

�

Susana Ladra, José R. Paramá, Fernando Silva-Coira

∗

Universidade da Coruña, Facultade de Informática, CITIC, Campus de Elviña s/n, 15071 A Coruña, Spain

a r t i c l e i n f o

Article history:

Received 15 December 2016

Revised 21 July 2017

Accepted 15 October 2017

Available online 18 October 2017

Keywords:

Geographic information systems

Raster datasets

Data compression

Indexing

Query processing

a b s t r a c t

Compact data structures are storage structures that combine a compressed representation of the data

and the access mechanisms for retrieving individual data without the need of decompressing from the

beginning. The target is to be able to keep the data always compressed, even in main memory, given that

the data can be processed directly in that form. With this approach, we obtain several benefits: we can

load larger datasets in main memory, we can make a better usage of the memory hierarchy, and we can

obtain bandwidth savings in a distributed computational scenario, without wasting time in compressing

and decompressing data during data exchanges.

In this work, we follow a compact data structure approach to design a storage structure for raster data,

which is commonly used to represent attributes of the space (temperatures, pressure, elevation measures,

etc.) in geographical information systems. As it is common in compact data structures, our new technique

is not only able to store and directly access compressed data, but also indexes its content, thereby accel-

erating the execution of queries.

Previous compact data structures designed to store raster data work well when the raster dataset has

few different values. Nevertheless, when the number of different values in the raster increases, their

space consumption and search performance degrade. Our experiments show that our storage structure

improves previous approaches in all aspects, especially when the number of different values is large,

which is critical when applying over real datasets. Compared with classical methods for storing rasters,

namely netCDF, our method competes in space and excels in access and query times.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Geographical information systems can use different data mod-

els to manage spatial information [2] . At the conceptual level, there

are two possibilities: object-based models and field-based models

[3] . Object-based models consider a space containing discrete and

identifiable entities, each with a geospatial position. In contrast,

field-based models can be seen as a continuous mathematical

function that for each position of the space returns a value. Typ-

ically, object-based models represent spaces containing buildings,

roads, and other man-made objects. On the other hand, field-based

models usually deal with images and physical properties such as

land elevation, temperature, atmospheric pressure, etc. At the log-

ical level, there are also two models: vector models , which repre-

sent the spatial information using points and line segments, and

raster models , which consider the space as a regular tessellation of

� A preliminary partial version of this paper was published in [1] .
∗ Corresponding author.

E-mail addresses: susana.ladra@udc.es (S. Ladra), jose.parama@udc.es (J.R.

Paramá), fernando.silva@udc.es (F. Silva-Coira).

disjoint cells, usually squares, each having a value [4] . Any logi-

cal spatial model can be used to represent any conceptual spatial

model, however, it is common to use vector models to represent

object-based models and raster models for field-based models.

This paper deals with spatial information represented with

a raster model. This involves images -including remotely sensed

imagery-, engineering, modeling, representations of parameters

of the land surface such as pollution levels, atmospheric pres-

sure, rain precipitations, land elevation, vegetation indices, etc.

Thanks to the advances in remote sensing and instrumentation,

the amount and size of raster datasets are increasing rapidly. For

example, it has been estimated that each day, remotely-sensed im-

agery is acquired at the rate of several terabytes per day [5] , and

the archived amount of raster data of this type is slowly approach-

ing the zettabyte scale [6] .

In this field, as usual, compression has been used to save space

and bandwidth [7–9] . Long-established compression methods do

not allow to process or query compressed data, requiring a pre-

vious decompression phase. However, a recent family of storage

structures, called compact data structures , is changing the way

in which compression has been traditionally used. Compact data

https://doi.org/10.1016/j.is.2017.10.007

0306-4379/© 2017 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.is.2017.10.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2017.10.007&domain=pdf
mailto:susana.ladra@udc.es
mailto:jose.parama@udc.es
mailto:fernando.silva@udc.es
https://doi.org/10.1016/j.is.2017.10.007

180 S. Ladra et al. / Information Systems 72 (2017) 179–204

structures combine in a unique storage structure a compressed

representation of a dataset and the mechanisms that allow access-

ing any given datum without the need of decompressing the data

from the beginning [10,11] . The objective is to keep the data al-

ways compressed, even in main memory. In this way, in addition to

the classical savings in disk space and bandwidth, we obtain sev-

eral additional benefits: we can process larger datasets within the

same memory, we can make a better usage of the memory hierar-

chy (including reducing costly disk accesses), and we can improve

the performance when using parallel processing. Data interchanges

between nodes in that scenario are a big issue since they can pro-

duce bottlenecks in the network. Compression has been used to

reduce bandwidth consumption [12,13] . However, data have to be

compressed prior any data exchange and decompressed at the des-

tination node, given that data cannot be processed in compressed

form. Nevertheless, using compact data structures, we do not need

those compression/decompression processes during data exchanges

thanks to the ability to process compressed data.

Another advantage is that, in many cases, compact data struc-

tures provide some sort of indexation, which allows answering

queries even faster than performing that query over the plain rep-

resentation and within the same compressed space [11,14,15] . That

is, this indexation is not provided by an auxiliary structure, and

the index plus the data, kept in the same storage structure, oc-

cupy less space than the original data. This characteristic is usually

called self-indexation .

There exists vast research focused on compressing raster

datasets, proposing both lossless [9,13,16,17] and lossy [7] ap-

proaches. In addition, there have been efforts in creating indexes

on raster data to improve query and processing performance [18–

20] . However, there is much less work on data structures capable

of compressing and indexing data at the same time. The first ex-

ponent is the quadtree [21,22] , originally designed as a method

to compress images, which allows the manipulation of the com-

pressed image directly in main memory and, in addition, it spa-

tially indexes the values of the raster. However, it does not provide

indexation over the values of each cell of the raster. To the best

of the authors’ knowledge, only two recent compact data struc-

tures [23] were designed to represent raster datasets and achieved

these three features: a compressed representation, a spatial index-

ation, and an indexation of the values of the cells. These techniques

work well when the number of different values in the raster is

low; however, if that number grows, both the space consumption

and the query performance degrade dramatically. Our new storage

structure scales much better when increasing the size of the in-

put data or when the raster matrix increases its cardinality, that

is, when the number of different values grows. Observe that this

is an important problem when dealing with rasters, since they are

usually obtained from a real continuous phenomenon as tempera-

ture, atmospheric pressure, etc.

This work presents a new storage structure designed follow-

ing a compact data structure approach to represent raster datasets,

called k 2 - raster , and an improved version that we call heuristic k 2 -

raster (k 2 H - raster). They are based on the k 2 -tree [24] , a storage

structure for representing binary matrices in little space, which

can be regarded as a compact version of a quadtree. The basic

ideas of k 2 - raster were already presented in a preliminary work

[1] . Here, we described it more in detail, including pseudocodes

and examples for more queries. The k 2
H

- raster , which was not pro-

posed in the original paper, is a variant that significantly improves

the spatio-temporal results. We use an entropy-based heuristical

approach to compress the last level of the representation, which

makes our solution the most space-efficient and scalable com-

pressed and queryable representation up to date.

In this paper, we also enhance the experiments, including more

queries. We ran the experiments over new raster matrices ex-

tracted from real datasets of different nature (temperatures and el-

evations). The basic k 2 - raster is superior to previous approaches in

most cases, and only when the number of different values is low, it

can be on a par in some parameters, whereas the heuristic variant

overcomes them in all aspects, even in the scenario of low number

of different values.

We also include a comparison with netCDF [25] , a classi-

cal method to store rasters. NetCDF includes the possibility of

compressing the data with Deflate [26] , and by using a simple

API, transparently accessing the compressed data. k 2 - raster obtains

compression ratios close to those achieved by netCDF, but differ-

ences are not significant. However, k 2 - raster clearly outperforms

netCDF in access and query times, even in some cases when using

the uncompressed version of netCDF files. Thanks to the indexing

capabilities of k 2 - raster , queries specifying conditions on the val-

ues of the raster are solved orders of magnitude faster than over

uncompressed netCDF files.

The rest of the paper is structured as follows. Section 2 presents

some related work. Section 3 describes the k 2 - raster in detail,

whereas Section 4 presents the k 2
H

- raster . Section 5 presents our

experimental study. Finally, Section 6 shows the conclusions and

future work.

2. Related work

2.1. Quadtress for raster representation or indexation

As we will see, the k 2 - raster uses some ideas of the k 2 -tree [24] ,

which is a region quadtree for binary matrices built with the latest

developments in the field of compact data structures. In particular,

the k 2 - raster uses the partition strategy of the region quadtree data

structure. Thus, we present here some notions of quadtrees.

There are many different variants of the quadtree and with dif-

ferent purposes [18,27] , but the compression of images using re-

gion quadtrees was one of its original targets [21,22] . In this sce-

nario, the quadtree was designed as a representation of images not

only for storage or transmission purposes but to process them di-

rectly in main memory [18] . To fit the structure in main memory,

the size is a relevant issue, and thus since it is a tree, pointer-less

representations were introduced [28,29] . These pointerless repre-

sentations use a locational code that for each leaf of the tree gives

its position in the space [28] or an implicit ordering [29] . For our

work, it is of special interest the latter case, denoted as Treecodes .

The region quadtree is represented by a sequence of numbers,

each representing a node of the conceptual region quadtree. Each

of these numbers has 5 bits, the most significant bit indicates

whether the corresponding node is a leaf or not, and the remain-

ing 4 bits store a value. In the case of a leaf node, that number is

the value corresponding to a pixel of the image; in non-leaf nodes,

it is the average value of the pixels contained in the region repre-

sented by such a node. This average value is used to give a pre-

view of the image during a slow transmission through a network.

The quadtree is stored as a sequence of bytes, each storing a 5-bit

number, where the correspondence of each byte with the nodes

of the conceptual tree is given by the ordering of the sequence,

which is a breadth-first traversal of the tree. The representation of

the image of Fig. 1 is the sequence of bytes: 20, 3, 18, 4, 7, 0, 1,

2, 5. The first 20 corresponds to the root node, which is an inner

node signaled with a 1 in the fifth bit, the next 4 bits store the

average value of all pixels in the image (4), and thus we have a

10100 (20). The third byte (18) corresponds to the quadrant fur-

ther divided into subquadrants, therefore it represents an internal

node (fifth bit set to one) and the next four bits store the average

value (2).

Our work also uses an implicit ordering using a breadth-first

traversal, but we separate the topology of the tree (the most sig-

https://isiarticles.com/article/159521

