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a  b  s  t  r  a  c  t

How  should  a network  experiment  be  designed  to achieve  high  statistical  power?  Experimental  treat-
ments  on  networks  may  spread.  Randomizing  assignment  of treatment  to  nodes  enhances  learning  about
the  counterfactual  causal  effects  of  a social  network  experiment  and  also  requires  new  methodology  (ex.
Aronow  and Samii,  2017a;  Bowers  et  al., 2013; Toulis  and  Kao,  2013). In this  paper  we show  that  the  way
in  which  a  treatment  propagates  across  a  social  network  affects  the  statistical  power  of  an  experimen-
tal  design.  As  such,  prior  information  regarding  treatment  propagation  should  be incorporated  into  the
experimental  design.  Our findings  justify  reconsideration  of standard  practice  in circumstances  where
units  are  presumed  to be  independent  even  in simple  experiments:  information  about  treatment  effects
is not  maximized  when  we  assign  half  the units  to  treatment  and  half  to  control.  We  also  present  an
example  in  which  statistical  power  depends  on the  extent  to which  the network  degree  of  nodes  is cor-
related  with  treatment  assignment  probability.  We  recommend  that  researchers  think  carefully  about
the  underlying  treatment  propagation  model  motivating  their study  in  designing  an  experiment  on a
network.

Published  by  Elsevier  B.V.

1. Introduction

We  consider the problem of designing experiments to causally
identify propagation on networks. In a simple experiment on inde-
pendent units with complete randomization to two treatment arms,
it is often assumed that one should assign half of the experimental
pool to treatment and half to control (Gerber and Green, 2012).2

When treatment given to one unit may  affect another unit, how-
ever, we show (in a simulation study using a realistic network
and realistic model of network treatment propagation) that it may
be better to assign less than half of the pool to treatment from
the perspective of statistical efficiency. The intuition is simple: if
treatment spreads rapidly across a network, then comparisons of
outcomes between treated and control units will become very small
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2 Technically speaking, the 50/50 treatment allocation is optimal for precision

when randomization is complete at the unit-level and outcomes have equal variance
in  both treated and control groups.

or even vanish as the control units to which the treatment spread
will act just like treated units. Thus, one might field a very effec-
tive experiment, perhaps an experiment in which controls race to
get access to the treatment or treated units spread the informa-
tion or other active ingredient far and wide, but be unable to detect
effects if everyone in the whole network reveals the same outcome
whether or not they were assigned to treatment. The simulations
that we show here confirm this intuition, but also reveal a trade-off
between ability to detect the direct effects of treatment assignment
on the units initially assigned to treatment and the ability to detect
the indirect or network mediated effects of the treatment as it prop-
agates to control units. One point that we emphasize in this paper
is that the way  in which a treatment propagates matters a great
deal as we  think about how to design experiments on networks.

In fields across the social and physical sciences, there is con-
siderable and growing interest in understanding how features
propagate over the vertices (i.e., nodes) in a graph (i.e., network) via
the graph topology. Furthermore, precise questions about causal
peer, spillover and propagation effects are becoming more com-
mon. Recent theoretical developments highlight the barriers to the
identification of causal peer/contagion effects in networks with
non-randomized, or observational, data (Lyons, 2011; Shalizi and
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Thomas, 2011). Several recent papers have employed random-
ized experimental designs to facilitate the identification of causal
peer effects (Aral and Walker, 2011; Ostrovsky and Schwarz, 2011;
Bapna and Umyarov, 2015; Bond et al., 2012; Ichino and Schündeln,
2012; Nickerson, 2008). For example, Ichino and Schündeln (2012)
conduct a field experiment during a national election in Ghana to
gauge how voter registration responds to the placement of election
monitors at registration workstations — an effect that is hypothe-
sized to spread geographically through the road network.

Recent methodological work enables scholars to make statis-
tical inferences about peer effects or global average effects when
the topology of a network is known (Bowers et al., 2013; Aronow
and Samii, 2017a; Eckles et al., 2017; Toulis and Kao, 2013).3 As
the ability to pose questions of spillover has increased, researchers
have begun to address how well these methods work, particularly
with respect to statistical efficiency. Eckles et al. (2017) show that
a graph cluster randomization design — where groups of nodes are
randomized to treatment together — reduces bias in estimates of
global average treatment effects with relatively little cost in terms
of statistical power. Baird et al. (2017) derive the efficiency calcu-
lations for estimates of average spillover effects for randomization
designs in which isolated groups of nodes are randomized first to a
saturation proportion — the proportion of units within the group to
be randomized to treatment — and then within group randomiza-
tion proceeds according to the first level randomization. Hirano and
Hahn (2010) derive efficiency calculations regarding cluster-wise
and within-cluster treatment proportions for estimates of direct
and indirect effects in two-level cluster randomization designs.
These approaches answer important questions about particular
designs; however, there is still a need to address how to design
randomization schemes to increase the statistical power to detect
specific forms of network mediated peer effects.

In this project we consider the performance of different ran-
domization designs using the methods of Bowers et al. (2013) and
Aronow and Samii (2017a) under different models of propagation.
Each of the methods we consider depends upon a typology of expo-
sure conditions based on the treatment status of each node and
the topology of the graph. For example, a node could be treated
directly by an experimenter, isolated from treatment (i.e., several
hops away from any treated nodes) or exposed to the treatment
at one degree of separation by virtue of the network relationship
— without control by the experimenter. The performance of ran-
domized experimental designs on networks depends on (1) the
exposure conditions of theoretical interest (say, direct treatment
versus indirect treatment; or more generally some propagation
flow parameter), (2) the topology of the network, (3) the ways in
which the propagation model affects nodes in each exposure con-
dition, and (4) the exposure condition distribution as determined
by the randomization design.4

To anchor our interest in interference, consider Coppock’s
(2014) recent replication of Butler et al. (2011). Butler et al. (2011)
run a field experiment that is focused on a special session of the New
Mexico legislature that was called to consider a specific budgetary

3 For now, we  set to the side the work on identifying how much of a total average
effect can be attributed to mechanisms other than direct treatment assignment —
for  example, the work on spillovers and indirect effects (Sinclair et al., 2012; Sinclair,
2011; Nickerson, 2008, 2011; Hudgens and Halloran, 2008; Sobel, 2006; Tchetgen
and VanderWeele, 2010; VanderWeele, 2008, 2010, 2011; VanderWeele et al., 2011,
2012; VanderWeele and Tchetgen, 2011; Miguel and Kremer, 2004; Chen et al., 2010;
Ichino and Schündeln, 2012).

4 We direct readers to Basse and Airoldi (2015) for a methodological investigation
similar to ours. They consider the problem of designing a randomized experiment to
minimize estimation error when outcomes are correlated on a network. Their focus
is, however, on estimating the direct effects of treatment, not on identifying indirect
or  propagation effects.

question. The field experiment was  designed to test the influence of
providing information about constituents’ preferences on legisla-
tors’ votes. Constituents across the state were first surveyed on the
budget question on which their legislators would be voting. Butler
and Nickerson sent district-specific results to randomly selected
members of the legislature. They found that providing informa-
tion about constituents’ preferences shifted legislators’ votes in the
direction of those preferences. Coppock (2014, pp. 159–160) notes
that,

“The estimates of responsiveness recovered by Butler et al.
(2011) rely on an assumption of non-interference (Cox 1958;
Rubin, 1980): Legislators respond only to their own treatment
status and not to the treatment status of others. This assumption
requires that legislators not share treatment information with
one another, which is at odds with the observation by Kingdon
(1973, p. 6) that legislatures are information-sharing networks.”

In replicating Butler et al. (2011), Coppock (2014) specifies a
model for the propagation of effects that spread through a network
between legislators defined by ideological similarity. Accounting
for the fact that the treatment assigned to one legislator had effects
on other legislators, Coppock (2014) estimates that the experiment
shifted nearly twice as many votes in the legislature as was origi-
nally estimated by Butler et al. (2011).5

In what follows, we  study the problem of causal inference given
treatment propagation in the context of a fixed graph topology and
a single round of randomized treatment and by a single round
of response measurement. We  review methods that have been
proposed in the literature for analyzing single-round (pre versus
post), fixed graph experimental data; and also review the sub-
stantive experimental applications that have used such designs.
We  then conduct a simulation study motivated by the registration
monitor randomization in Ichino and Schündeln (2012), using the
Ghanaian network of roads between voter registration stations as
a realistic moderate sized graph.6 In the simulation study, we con-
sider the performance of alternative experimental designs that vary
the treatment probability: the number of nodes assigned to initial
treatment, who  is treated: the association between treatment prob-
ability and node degree (i.e., a node’s number of ties), and how they
are treated: different parameterizations of the propagation model.

1.1. Statistical inference for propagated causal effects

We consider two general approaches to statistical inference
about causal effects when those effects may  propagate through a
network. The flexible approach developed by Bowers et al. (2013)
is a hypothesis testing framework designed to evaluate whether
differences between the treatment and control groups are more
effectively characterized by one model of treatment effects, which
can include propagation effects, than another model. Bowers et al.
(2013) focus on a natural sharp null model of no treatment effects
(i.e., stochastic equivalence across all experimental conditions).
The null distribution is derived exactly or generated approximately
through repeated computations of the test statistic using permuta-
tions in which the treatment vector is re-randomized according
to the experimental design, and the hypothesized effects of the
propagation model are removed. There are two highly appealing

5 Coppock (2016) later shows that the test statistic and research design was
underpowered to detect this effect.

6 Ichino and Schündeln (2012) did not use the road network in their paper, but
instead focused on estimating average spillover effects within radii of 5 km and
10 km following the multi-level experimental design of Sinclair et al. (2012). We use
the  road network to provide us with a realistic network for use in our simulations
studying the power of different randomization allocation plans.
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