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a b s t r a c t

This paper studies the problem of designing networks of nonidentical coupled oscillators in order to
achieve a desired level of phase cohesiveness, defined as themaximum asymptotic phase difference across
the edges of the network. In particular, we consider the following two design problems: (i) the nodal-
frequency design problem, in which we tune the natural frequencies of the oscillators given the topology
of the network, and (ii) the (robust) edge-weight design problem, in which we design the edge weights
assuming that the natural frequencies are given (or belong to a given convex uncertainty set). For both
problems, we optimize an objective function of the design variables while considering a desired level of
phase cohesiveness as our design constraint. This constraint defines a convex set in the nodal-frequency
design problem. In contrast, in the edge-weight design problem, the phase cohesiveness constraint yields
a non-convex set, unless the underlying network is either a tree or an arbitrary graph with identical edge
weights. We then propose a convex semidefinite relaxation to approximately solve the (non-convex)
edge-weight design problem for general (possibly cyclic) networks with nonidentical edge weights.
We illustrate the applicability of our results by analyzing several network design problems of practical
interest, such as power redispatch in power grids, sparse network design, (robust) network design for
distributed wireless analog clocks, and the detection of edges leading to the Braess’ paradox in power
grids.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of synchronization in networks of coupled oscil-
lators is one of the most fundamental problems in the field of
networked dynamical systems. Networks of coupled oscillators
present a rich dynamic behavior, as reported in the vast literature
on this topic; see, for example, Dörfler and Bullo (2014) and
references therein. Many complex artificial and natural systems
can be modeled as networks of coupled oscillators, such as pace-
maker cells in the heart, neurons in the brain, clocks in computing
networks, mobile sensor networks, and power grids. Considerable
research in this field has been focused on studying the effect of
network structure, coupling strengths, and nodal dynamics on the
ability of a network of oscillators to synchronize (di Bernardo,
Garofalo, & Sorrentino, 2007; Menck, Heitzig, Kurths, & Schellnhu-
ber, 2014; Sorrentino, Di Bernardo, & Garofalo, 2007). Various
metrics have been proposed in the literature to quantify and op-
timize the synchronization performance. A broad class of these
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metrics focuses on the transient response, such as the ability of the
network to resynchronize after perturbations (Donetti, Hurtado, &
Munoz, 2005; Kempton, Herrmann, & di Bernardo, 2015; Motter,
Zhou, & Kurths, 2005; Pecora & Carroll, 1998). In this context,
synchronizability can be characterized by either the required effort
to synchronize the network (Sjödin, Bamieh, & Gayme, 2014), the
speed of convergence to the synchronization manifold (Fardad,
Lin, & Jovanović, 2014b; Xiao & Boyd, 2004), or the range of cou-
pling values for which a network with uniform coupling strengths
would synchronize (Pecora & Carroll, 1998). Using the master
stability framework, proposed in Pecora and Carroll (1998), it was
shown that the Laplacian algebraic connectivity and the Laplacian
eigenratio are two network-dependent measures able to capture
the synchronizability of a network of identical coupled oscillators.
Based on this connection, we find in the literature several works
aiming to optimize the synchronizability of a network of identical
coupled oscillators using the Laplacian matrix (Clark, Alomair,
Bushnell, & Poovendran, 2014; Donetti et al., 2005; Fardad, Lin, &
Jovanovic, 2014a; Kempton et al., 2015; Motter, Myers, Anghel, &
Nishikawa, 2013;Motter et al., 2005;Mousavi, Somarakis, &Motee,
2016; Nishikawa &Motter, 2006; Pecora & Carroll, 1998; Rad, Jalili,
& Hasler, 2008; Siami & Motee, 2016; Skardal & Arenas, 2015).

In Dörfler, Chertkov, and Bullo (2013), the concept of phase co-
hesiveness, defined as the maximum steady-state phase difference
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across the edges of a network, was proposed as a synchronization
metric in networks of nonidentical coupled oscillators. This metric
explicitly accounts for the simultaneous effect of the network
topology, the coupling strengths, and the nodal dynamics on the
local stability of the synchronous solution. This paper adopts phase
cohesiveness as a synchronization measure in order to develop an
optimization framework for designing the parameters of a network
of coupled oscillators. As described in Section 2, the oscillators in
our network are modeled using the swing equation, widely used in
the analysis of power grids (Bergen & Hill, 1981). Specifically, we
address the following design problems:

(1) Design of natural frequencies: In this problem, we assume
that the network structure and the coupling strengths are
given. The network designer is able to tune the natural fre-
quencies of each oscillator by incurring a cost. The objective
is to minimize the total tuning cost while guaranteeing a
desired level of phase cohesiveness.

(2) Design of link weights: In this second problem, we assume
that the natural frequencies of the oscillators belong to a
given polyhedral uncertainty set. The network designer is
able to tune the edge weights by incurring a cost. The goal is
to minimize the total tuning cost while guaranteeing a de-
sired level of phase cohesiveness for all possible realizations
of the natural frequencies in the uncertainty set.

The framework herein proposed can be used in a wide range
of practical applications, namely, prevention of cascading failures
in power grids (Linnemann, Echternacht, Breuer, & Moser, 2011),
optimal design of electrical infrastructure upgrades, sparsity pro-
moting network design (Dhingra, Lin, Fardad, & Jovanović, 2012;
Lin, Fardad, & Jovanović, 2012; Siami &Motee, 2015), and detection
of links inducing the Braess’ paradox (i.e., the counter-intuitive
phenomenon of losing synchronization as the result of adding new
edges (Witthaut & Timme, 2012)). We will discuss some of these
applications in Section 5.

The rest of the paper is organized as follows. Section 2 provides
some background on the synchronization problem. Section 3 de-
velops an optimization framework to solve the frequency design
problem. The (robust)weight design problem is solved in Section 4.
Illustrative examples are presented in Section 5. Concluding re-
marks are drawn in Section 6.

Notation: Let R, R+, and R++ be the set of real, nonnegative,
and strictly positive numbers. Let 1n and 0n be the n-dimensional
vectors of unit and zero entries. The set {1, . . . , n} is denoted by
[n]. The infinity norm of x ∈ Rn is denoted as ∥x∥∞ = maxi|xi|, the
ℓ1 norm as ∥x∥1 =

∑n
i=1|xi|, and the ℓ0 norm as ∥x∥0 = card({i ∈

[n] : xi ̸= 0}), where card(·) denotes the cardinality of a set. For
x, y ∈ Rn, the inequality x ≤ y is component-wise. We denote by
Sn×n the set of n× n real, symmetric matrices. For square matrices
A and B, we write A ⪰ B if and only if A−B is positive semidefinite.

Elements of algebraic graph theory: A graph is defined as G =

(V, E), where V is a set of n nodes and E is a set of m undirected
edges. We assume that the graph is connected and has no self-
loops. We consider graphs with weights associated to both edges
and nodes. We denote the weight of an edge e = {i, j} ∈ E as
we = wij. The weighted adjacency matrix of an undirected graph G,
denoted by A =

[
aij

]
, is an n × n symmetric matrix defined entry-

wise as aij = wij if {i, j} ∈ E , and aij = 0, otherwise. The weighted
Laplacian matrix of G is defined as L = diag (A1n) − A. For an edge
e = {i, j} ∈ E , we define be ∈ Rn with be,i = 1, be,j = −1 (or be,i =

−1, be,j = 1) and all other entries equal to zero. The incidence
matrix B ∈ Rn×m is the matrix with e th column be. For a weighted
graph, we define the edge-weight vector w = (w1, . . . , wm)⊤,
where we is the weight of the edge labeled e. The Laplacian matrix
of the weighted graph can be written as L(w) = Bdiag (w) B⊤.
The Moore–Penrose pseudoinverse of the Laplacian is defined as
L(w)† =

(
L(w) +

1
n1n1⊤

n

)−1
−

1
n1n1⊤

n . For any connected graphwith
n vertices, the identity L(w)L(w)† = L(w)†L(w) = In− 1

n1n1⊤
n holds.

2. Synchronization in networks of heterogeneous oscillators

Consider the partition {V1,V2} of a set of n nodes in a connected,
weighted, undirected graph G(V, E). The state of each node i ∈ V
is represented by an angular position θi ∈ R whose dynamics is
described by the following set of differential equations:

miθ̈i + diθ̇i = ωi −

n∑
j=1

aij sin
(
θi − θj

)
, i ∈ V1, (1a)

diθ̇i = ωi −

n∑
j=1

aij sin
(
θi − θj

)
, i ∈ V2. (1b)

Here, V1 is the subset of oscillators following a second-order dy-
namics with inertia mi > 0 and damping coefficient di > 0, and
V2 is the subset of oscillators with a first-order dynamics; ωi ∈ R
is the natural frequency of the i th oscillator (which corresponds
to power generation/consumption in generator/load buses), and
aij ≥ 0 is the (ij)-th entry of the weighted adjacency matrix of
G(V, E). The dynamics in (1) represents the swing dynamics for a
structure-preserving lossless power network with constant volt-
age magnitudes at the buses (Bergen & Hill, 1981). This dynamics
can be written in matrix form as

M θ̈ + Dθ̇ = f(θ) = ω − BWsin(B⊤θ), (2)

where θ = (θ1, . . . , θn)⊤, ω = (ω1, . . . , ωn)⊤,
M = diag({mi}i∈V1 , 0|V2|) is the diagonal matrix of inertias, D =

diag({di}i∈V ) is the diagonal matrix of damping coefficients, B is
the incidence matrix of G, W = diag (w) is the diagonal matrix
of edge weights, and w = (w1, . . . , wm)⊤ where we > 0 is the
weight of the e th edge in the graph. The special case V1 = ∅ and
di = 1 corresponds to the classical Kuramoto model (Acebrón,
Bonilla, Vicente, Ritort, & Spigler, 2005). The following definition
characterizes the notion of synchronization for (2).

Definition 2.1. A solution θ(t) to the coupled oscillator model
(1) is said to be frequency-synchronized if limt→∞|θi(t) −

θj(t)|( mod 2π ) = ϕ⋆
ij, for all {i, j} ∈ E and some ϕ⋆

ij ∈ [0, 2π ).
Furthermore, if ϕ⋆

ij = 0 for all {i, j} ∈ E , the solution is said to be
phase-synchronized.

Phase synchronization can only be achieved if all the natural
frequencies are identical. In contrast, if the natural frequencies
are not all identical, the network can only achieve frequency syn-
chronization. For a frequency-synchronized solution, the angular
velocities of the oscillators converge towards a common asymp-
totic frequency given by ωs =

∑n
i=1ωi/

∑n
i=1di (Dörfler and Bullo,

2011, § 5.2). Thus, the frequency-synchronized solution satisfies
limt→∞(θ(t) − θs(t))( mod 2π ) = 0n, where θs(t) = (ωst)1n + θ⋆

for some θ⋆
∈ Rn such thatM θ̈s +Dθ̇s = f(θs). It then follows from

Definition 2.1 that a frequency-synchronized solution θ(t) satisfies
limt→∞|θi(t) − θj(t)| = |θ ⋆

i − θ ⋆
j |, ∀{i, j} ∈ E .

Definition 2.2. For any frequency-synchronized solution θs(t) =

(ωst)1n+θ⋆ of (2), the corresponding phase cohesiveness is defined
as

ϕ(B,w, ω) = max
{i,j}∈E

lim
t→∞

|θi(t) − θj(t)|(mod 2π )

= ∥B⊤θ⋆
∥∞ (mod 2π ). (3)

Without loss of generality, we can assume thatωs = 0 by introduc-
ing a rotational reference frame in which ωs = 0. It then follows
that θs(t) = θ⋆ and 0n = M θ̈s + Dθ̇s = f(θs) = f(θ⋆), i.e., the
frequency-synchronized solution corresponds to a fixed point of
(2),

ω − BWsin(B⊤θ⋆) = 0n. (4)
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