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a b s t r a c t 

We consider the Network Design Problem with Vulnerability Constraints (NDPVC) which simultaneously 

addresses resilience against failures (network survivability) and bounds on the lengths of each communi- 

cation path (hop constraints). Solutions to the NDPVC are subgraphs containing a path of length at most 

H st for each commodity { s , t } and a path of length at most H 

′ 
st between s and t after at most k − 1 edge 

failures. We first show that a related and well known problem from the literature, the Hop-Constrained 

Survivable Network Design Problem ( k HSNDP), that addresses the same two measures produces solutions 

that are too conservative in the sense that they might be too expensive in practice or may even fail 

to provide feasible solutions. We also explain that the reason for this difference is that Mengerian-like 

theorems not hold in general when considering hop-constraints. Three graph theoretical characteriza- 

tions of feasible solutions to the NDPVC are derived and used to propose integer linear programming 

formulations. In a computational study we compare these alternatives with respect to the lower bounds 

obtained from the corresponding linear programming relaxations and their capability of solving instances 

to proven optimality. In addition, we show that in many cases, the solutions produced by solving the 

NDPVC are cheaper than those obtained by the related kHSNDP. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

For Internet service providers, it is essential to provide stable 

and reliable communications between any two points in their sup- 

porting telecommunication networks. However, it is not easy to 

provide a precise definition of reliability. A vast body of literature, 

both in the engineering and operations research community, sug- 

gests various concepts for network reliability. This is because the 

reliability of a network depends on several factors. On the one side, 

it depends on the technical equipment installed along the links 

and nodes of the network. On the other side, even with the best 

available equipment, reliability may be easily destroyed, if the un- 

derlying network topology is vulnerable to failures. Therefore, re- 

sistance to network failures (also known as network survivability ) 

has been used in the network optimization literature as one of the 

main criteria for designing reliable communication networks (see, 

e.g., Kerivin & Mahjoub, 2005 ). A network is said to be survivable, 

if communications between nodes can be established, even after 

failures of a pre-defined number of nodes or links. Starting with 

the seminal work by Grötschel, Monma, and Stoer (1995) , a large 

∗ Corresponding author. 

E-mail addresses: legouveia@fc.ul.pt (L. Gouveia), markus.leitner@univie.ac.at (M. 

Leitner). 

body of mathematical models and algorithmic approaches for de- 

signing survivable networks has been proposed. 

Another important issue for Internet service providers is qual- 

ity of service, see e.g., Klincewicz (2006) . Each packet of a data 

flow traveling through a path from its source node to its desti- 

nation node suffers a total delay that is given by the propaga- 

tion delay on each link and the queuing and transmission delays 

on each intermediate node. Jitter, defined as the time difference 

between the maximum delay and the minimum delay among all 

packets of a data flow, is an important quality of service param- 

eter that should be bounded to guarantee a given quality of ser- 

vice ( Sheikh & Ghafoor, 2011 ). This parameter is of particular im- 

portance for multimedia services (see, Roychoudhuri, Al-Shaer, & 

Brewster, 2006 ) but also for data service running over mobile net- 

works (see, Scharf, Necker, & Gloss, 2004 ). Note that the dominant 

factor on jitter is the queuing delay since propagation introduces a 

constant delay on each packet and transmission delay is only de- 

pendent on packet size statistics. A simple way of bounding jitter 

is to bound the number of packet queues, which is equivalent to 

bound the number of hops of each routing path. Hence, the quality 

of service can be ensured by imposing so-called hop-constraints. 

Recent literature suggests to combine survivability and quality 

of service by additionally imposing hop-constraints when design- 

ing survivable networks. Thus, one guarantees that for every dis- 

tinct pair of nodes, there exists a pre-defined number of edge/node 
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Fig. 1. Example of an instance of the NDPVC with R = {{ s 1 , t 1 } , { s 2 , t 2 }} , H st = 3 , 

H ′ st = 4 , ∀{ s, t} ∈ R , and a feasible solution to this instance (bold edges). 

disjoint paths, such that each such path does not exceed the given 

hop limit ( Botton, Fortz, Gouveia, & Poss, 2013 ). In this article we 

show that solutions to this problem variant are too conservative 

and too expensive, from the perspective of a network provider. We 

therefore propose to study a new (and related) problem, that en- 

sures both survivability, and the maintenance of the hop-limits af- 

ter a failure of a pre-defined number of nodes or links, but with 

significantly less restrictions on the underlying network topology. 

We call the problem the Network Design Problem with Vulnerabil- 

ity Constraints (NDPVC). The term “vulnerability” is coined from 

graph theory (see, e.g., Bermond, Bond, Paoli, & Peyrat, 1983 ) and 

is usually associated to the study of changes in the distance be- 

tween pairs of nodes due to graph alterations (e.g., edge or node 

removals). We will have more to say about this in Section 2 . As 

in many related problems, one may consider protection against 

edge or node failures. We focus on the case of edge-connectivity 

for which the formal problem definition is given below. The node- 

connectivity case will be briefly addressed in Section 5 . 

Problem definition and motivation. We are given an undirected 

graph G = (V, E) , with nonnegative edge costs c e ≥ 0, for all 

e ∈ E , and a parameter k ∈ N specifying the network surviv- 

ability. In addition, we are given a set of commodities R ⊆ V ×
V \{ (v , v ) | v ∈ V } and two hop limits, H st ≤ H 

′ 
st ∈ N , for each pair 

{ s, t} ∈ R . The goal is to find a minimum cost subgraph of G , such 

that for each pair { s, t} ∈ R , it contains a path of length at most 

H st , and after removal of any k − 1 edges from it, the resulting 

graph contains a path of length at most H 

′ 
st . 

Fig. 1 illustrates an input graph G with commodities R = 

{{ s 1 , t 1 } , { s 2 , t 2 }} , k = 2 , and hop limits H st = 3 , H 

′ 
st = 4 for all 

{ s, t} ∈ R , together with a feasible solution. Notice, that the well 

known, NP-hard, survivable network design problem (see, e.g., 

Grötschel et al., 1995 ) is a special case of the NDPVC when the 

hop-limits are redundant. Thus the NDPVC is NP-hard as well. 

A related problem that has already been studied in the liter- 

ature is the hop-constrained survivable network design problem 

( k HSNDP). In this problem, one searches for a minimum-cost sub- 

graph, such that between each pair of commodities there exist 

k edge- (node-) disjoint paths, each containing at most H edges. 

Various integer programming formulations and solution algorithms 

have been proposed recently for the k HSNDP, see, e.g., Botton et al. 

(2013) ; Gouveia, Patricio, and de Sousa (2006) ; Mahjoub, Simon- 

etti, and Uchoa (2013) . At first one may assume that the NDPVC 

and the k HSNDP are equivalent, at least when H = H 

′ . The reason 

for this is that if one would ignore the hop constraints, the two 

problems, k HSNDP and NDPVC, become equivalent. This equiva- 

lence follows immediately from Menger’s theorem ( Menger, 1927 ). 

As a matter of fact, quite often in the literature, mathematical for- 

mulations for modeling survivable networks are derived using the 

results of the Menger’s theorem (see, e.g, Grötschel et al., 1995; 

Kerivin & Mahjoub, 2005; Ljubi ́c., 2010 ). 

Fig. 2. A feasible solution for the edge disjoint variant of NDPVC with k = 2 , R = 

{{ 1 , 3 }} , H 13 = 2 , H ′ 13 = 3 , that does not contain two edge disjoint paths of length 2 

and 3 between nodes 1 and 3, cf. Exoo (1982) . 

Unfortunately, once the hop-constraints are imposed, the 

two problems are no longer equivalent, since hop-constrained 

Mengerian-like theorems (see Section 2 for a more formal defini- 

tion and discussion) are valid only for small or large hop-limits. 

To see that the two problems, NDPVC and k HSNDP, are different 

in general case, consider the example given in Fig. 2 . Assume that 

a network provider wants to make this network survivable against 

single edge failures (i.e., k = 2 ), and to protect the vulnerability of 

the network by assuming that for a commodity pair R = {{ 1 , 3 }} , 
the distance between 1 and 3 should be at most H 13 = 2 and, af- 

ter a single edge failure, this distance should not be greater than 

H 

′ 
13 

= 3 . The path P = (1 , 2 , 3) is the unique (1, 3)-path of length 

less than or equal to H 13 . If an arbitrary edge in this graph fails, 

the solution will still contain a feasible (1, 3)-path of length at 

most three. Hence, the graph depicted in Fig. 2 is a feasible ND- 

PVC solution. On the other hand, if the network provider would 

try solve the related k HSNDP on this graph, instead, then one can 

easily observe that no feasible solution exist. A feasible k HSNDP 

solution needs to contain two edge-disjoint paths between 1 and 

3, such that one path contains at most H 13 edges and the other at 

most H 

′ 
13 

edges. This is, however impossible, since the only (1, 3)- 

path P ′ that is edge disjoint to P , is given by P ′ = (1 , 4 , 2 , 5 , 3) and 

has length four. This example illustrates that for network providers 

it could be more attractive to consider the NDPVC to protect vul- 

nerability of a network, rather than the k HSNDP. 

This example can be easily generalized for k ≥ 3 and for other 

values of H st and H 

′ 
st , { s, t} ∈ R . The optimal value of k HSNDP al- 

ways gives an upper bound on the optimal value of the NDPVC. 

It is easy to find examples where solutions to both problems ex- 

ist but the optimal solution to the k HSNDP is more expensive than 

of the NDPVC. Observe that not only the gap between the cost of 

an optimal solution of NDPVC and k HSDNP can be arbitrarily large, 

but, as demonstrated above, there exist networks which are fea- 

sible for NDPVC but infeasible for k HSNDP. Since these relations 

motivate this work we summarize them in Observation 1 . 

Observation 1. Let I be an arbitrary, feasible instance of the ND- 

PVC and v (I) be its optimal cost. Then, exactly one of the following 

holds: 

(i) There does not exist a feasible solution of the k HSNDP for I . 

(ii) v (I) ≤ v ′ (I) , where v ′ (I) is the optimal cost of the k HSNDP 

for I . 

Furthermore, there exist instances such that v (I) < v ′ (I) and 

v ′ (I) 
v (I) 

can be arbitrary large. 

Note also that, cases in which R is induced by all node pairs 

{ s , t } from a given set of “terminals” T , i.e., R = {{ s, t} | s, t ∈ T } , 
give rise to several interesting diameter variants of the problem. 

As one example, we mention the case when H st = D and H 

′ 
st = D 

′ 
for all { s, t} ∈ R , in which case we aim to identify a minimum cost 

Steiner subgraph with diameter at most D such that after the re- 

moval of k edges (nodes), the graph is connected and has diameter 

at most D 

′ . 
The remainder of this article in which we mainly focus on the 

case of single edge failures (i.e. k = 2 ) is organized as follows. We 
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