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a b s t r a c t 

We are seeing an enormous increase in the availability of streaming, time-series data. Largely driven by 

the rise of connected real-time data sources, this data presents technical challenges and opportunities. 

One fundamental capability for streaming analytics is to model each stream in an unsupervised fashion 

and detect unusual, anomalous behaviors in real-time. Early anomaly detection is valuable, yet it can be 

difficult to execute reliably in practice. Application constraints require systems to process data in real- 

time, not batches. Streaming data inherently exhibits concept drift, favoring algorithms that learn con- 

tinuously. Furthermore, the massive number of independent streams in practice requires that anomaly 

detectors be fully automated. In this paper we propose a novel anomaly detection algorithm that meets 

these constraints. The technique is based on an online sequence memory algorithm called Hierarchi- 

cal Temporal Memory (HTM). We also present results using the Numenta Anomaly Benchmark (NAB), 

a benchmark containing real-world data streams with labeled anomalies. The benchmark, the first of its 

kind, provides a controlled open-source environment for testing anomaly detection algorithms on stream- 

ing data. We present results and analysis for a wide range of algorithms on this benchmark, and discuss 

future challenges for the emerging field of streaming analytics. 

© 2017 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

With sensors pervading our everyday lives, we are seeing an ex- 

ponential increase in the availability of streaming, time-series data. 

Largely driven by the rise of the Internet of Things (IoT) and con- 

nected real-time data sources, we now have an enormous num- 

ber of applications with sensors that produce important data that 

changes over time. Analyzing these streams effectively can provide 

valuable insights for any use case and application. 

The detection of anomalies in real-time streaming data has 

practical and significant applications across many industries. Use 

cases such as preventative maintenance, fraud prevention, fault de- 

tection, and monitoring can be found throughout numerous in- 

dustries such as finance, IT, security, medical, energy, e-commerce, 

agriculture, and social media. Detecting anomalies can give action- 

able information in critical scenarios, but reliable solutions do not 

yet exist. To this end, we propose a novel and robust solution to 

tackle the challenges presented by real-time anomaly detection. 

Consistent with [1] , we define an anomaly as a point in time 

where the behavior of the system is unusual and significantly dif- 

ferent from previous, normal behavior. An anomaly may signify a 

∗ Corresponding author. 

E-mail address: sahmad@numenta.com (S. Ahmad). 

negative change in the system, like a fluctuation in the turbine ro- 

tation frequency of a jet engine, possibly indicating an imminent 

failure. An anomaly can also be positive, like an abnormally high 

number of web clicks on a new product page, implying stronger 

than normal demand. Either way, anomalies in data identify abnor- 

mal behavior with potentially useful information. Anomalies can 

be spatial , where an individual data instance can be considered 

anomalous with respect to the rest of data, independent of where 

it occurs in the data stream, like the first and third anomalous 

spikes in Fig. 1 . An anomaly can also be temporal , or contextual , 

if the temporal sequence of data is relevant; i.e., a data instance 

is anomalous only in a specific temporal context, but not other- 

wise. Temporal anomalies, such as the middle anomaly of Fig. 1 , 

are often subtle and hard to detect in real data streams. Detecting 

temporal anomalies in practical applications is valuable as they can 

serve as an early warning for problems with the underlying sys- 

tem. 

1.1. Streaming applications 

Streaming applications impose unique constraints and chal- 

lenges for machine learning models. These applications involve an- 

alyzing a continuous sequence of data occurring in real-time. In 

contrast to batch processing, the full dataset is not available. The 
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Fig. 1. The figure shows real-world temperature sensor data from an internal component of a large industrial machine. Anomalies are labeled with circles. The first anomaly 

was a planned shutdown. The third anomaly was a catastrophic system failure. The second anomaly, a subtle but observable change in the behavior, indicated the actual 

onset of the problem that led to the eventual system failure. The anomalies were hand-labeled by an engineer working on the machine. This file is included in the Numenta 

Anomaly Benchmark corpus [2] . 

system observes each data record in sequential order as they arrive 

and any processing or learning must be done in an online fashion. 

Let the vector x t represent the state of a real-time system at time 

t . The model receives a continuous stream of inputs: 

. . . , x t−2 , x t−1 , x t , x t+1 , x t+2 , . . . 

Consider for example, the task of monitoring a datacenter. Com- 

ponents of x t might include CPU usage for various servers, band- 

width measurements, latency of servicing requests, etc. At each 

point in time t we would like to determine whether the behavior 

of the system is unusual. The determination must be made in real- 

time, before time t + 1 . That is, before seeing the next input ( x t+1 ), 

the algorithm must consider the current and previous states to de- 

cide whether the system behavior is anomalous, as well as perform 

any model updates and retraining. Unlike batch processing, data is 

not split into train/test sets, and algorithms cannot look ahead. 

Practical applications impose additional constraints on the 

problem. Typically, the sensor streams are large in number and at 

high velocity, leaving little opportunity for human, let alone expert, 

intervention; manual parameter tweaking and data labeling are not 

viable. Thus, operating in an unsupervised, automated fashion is 

often a necessity. 

In many scenarios the statistics of the system can change over 

time, a problem known as concept drift [3,4] . Consider again the 

example of a production datacenter. Software upgrades and config- 

uration changes can occur at any time and may alter the behavior 

of the system ( Fig. 2 ). In such cases models must adapt to a new 

definition of “normal” in an unsupervised, automated fashion. 

In streaming applications early detection of anomalies is valu- 

able in almost any use case. Consider a system that continuously 

monitors the health of a cardiac patient’s heart. An anomaly in the 

data stream could be a precursor to a heart attack. Detecting such 

an anomaly minutes in advance is far better than detecting it a few 

seconds ahead, or detecting it after the fact. Detection of anoma- 

lies often gives critical information, and we want this information 

early enough that it’s actionable, possibly preventing system fail- 

ure. There is a tradeoff between early detections and false posi- 

tives, as an algorithm that makes frequent inaccurate detections is 

likely to be ignored. 

Given the above requirements, we define the ideal characteris- 

tics of a real-world anomaly detection algorithm as follows: 

1. Predictions must be made online; i.e., the algorithm must iden- 

tify state x t as normal or anomalous before receiving the sub- 

sequent x t+1 . 

2. The algorithm must learn continuously without a requirement 

to store the entire stream. 

3. The algorithm must run in an unsupervised, automated 

fashion—i.e., without data labels or manual parameter tweak- 

ing. 

4. Algorithms must adapt to dynamic environments and concept 

drift, as the underlying statistics of the data stream is often 

non-stationary. 

5. Algorithms should make anomaly detections as early as possi- 

ble. 

6. Algorithms should minimize false positives and false negatives 

(this is true for batch scenarios as well). 

Taken together, the above requirements suggest that anomaly 

detection for streaming applications is a fundamentally different 

problem than static batch anomaly detection. As discussed fur- 

ther below, the majority of existing anomaly detection algorithms 
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