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a  b  s  t  r  a  c  t

Despite  the  rapid  adoption  of laser  powder  bed  fusion  (LPBF)  Additive  Manufacturing  by  industry,  current
processes  remain  largely  open-loop,  with  limited  real-time  monitoring  capabilities.  While some  machines
offer  powder  bed  visualization  during  builds,  they  lack  automated  analysis  capability.  This  work  presents
an approach  for  in-situ  monitoring  and analysis  of  powder  bed  images  with  the  potential  to  become  a
component  of  a real-time  control  system  in  an LPBF  machine.  Specifically,  a computer  vision  algorithm  is
used to automatically  detect  and  classify  anomalies  that  occur during  the  powder  spreading  stage  of the
process.  Anomaly  detection  and  classification  are implemented  using  an unsupervised  machine  learning
algorithm,  operating  on  a moderately-sized  training  database  of  image  patches.  The  performance  of the
final  algorithm  is  evaluated,  and  its usefulness  as a standalone  software  package  is  demonstrated  with
several  case  studies.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In recent years, Additive Manufacturing, colloquially known
as 3D-printing, has experienced immense growth as an indus-
try; this is particularly true for machines and processes producing
net-shape metal parts [1]. Additive Manufacturing promises to be
well-suited for aerospace and medical applications [2] as well as
for producing mission-critical parts, on-site, at remote locations
[3]. However, these applications require a degree of part quality
assurance and process reliability that are difficult to achieve with
the systems currently on the market [1]. It is commonly recognized
that implementation of in-situ process monitoring and closed-loop
control is necessary to meet the stringent requirements of these
applications [1].

Laser Powder Bed Fusion (LPBF) machines operate by spread-
ing a thin layer (typically 20 �m–60 �m thick) of metal powder
over a build plate using a recoater blade. After powder spreading, a
laser beam is used to selectively melt the powder in locations cor-
responding to a 2D slice of a 3D part. After the lasing is complete,
the build plate is lowered, another layer of powder is spread (now
over an existing powder bed, Fig. 1), and the process repeats until
the part is finished. The entire process of creating a part is often
referred to as a build. There has been extensive work performed on
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monitoring builds in-situ [4–6], with a particular focus on tracking
both the size of the melt pool produced by the laser beam [7–9]
as well as the powder bed temperature [10]. Many of the flaws in
a final part, as well as the overall reliability of the build process,
are directly related to interactions between the recoater blade and
the powder bed. As a result, several groups have begun paying spe-
cial attention to this stage of both the LPBF and Electron Beam PBF
processes [7,11–17]. The focus of the presented work is to monitor
the powder bed for indications of flaws in final parts, as well as
anomalies that may  impact the stability of the process as a whole.

For this work, six types of anomalies (not including the anomaly-
free case), summarized in Table 1, were identified. These anomalies
range in severity from recoater hopping which may  only indicate
the onset of a more severe problem, to super-elevation which can
be quite serious. Some anomalies (such as part failure) may  indi-
cate flaws in the final part, while others, such as recoater streaking,
suggest damage to the machine itself; further description of the
anomalies is provided in Section 2.2. Detection of recoater streak-
ing has been explored by Craeghs et al. [7] and various methods
for detecting super-elevation (albeit at a different size scale) have
been proposed by Jacobsmühlen et al. [12]. Recent work by Abdel-
rahman et al. [13] demonstrates layer-wise detection of general
flaws via comparison of post-fusion optical images with the CAD
model. Little work has been done to comprehensively address all
of these anomaly types simultaneously, particularly over the entire
build volume and using only hardware directly available from
an AM machine manufacturer. Furthermore, much of the exist-
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Table  1
Brief description of anomaly classifications and their respective color codes used throughout this document. Additional descriptions can be found in Section 2.2.

Anomaly Description Color Code

Anomaly-Free/Okay No significant anomalies in the powder bed. Green (3D figures) Clear
(overlays)

Recoater Hopping Caused by the recoater blade striking a part, characterized by repeated
vertical (perpendicular to the recoater spreading direction, Fig. 1) lines.

Teal/Light Blue

Recoater Streaking Caused either by the recoater blade dragging a contaminant across the
powder bed or by damage to the blade. Characterized by horizontal
(parallel to the recoater spreading direction, Fig. 1) lines.

Dark Blue

Debris  Debris or other small to mid-sized discrepancies located in the powder
bed but not directly over any parts.

Black (plots) White
(overlays)

Super-Elevation Occurs when a part warps or curls upwards out of the powder layer.
Typically the result of a buildup of residual thermal stresses.

Red

Part  Failure General classification for any significant damage to a part.
Characterized by a variety of signatures.

Magenta/Purple

Incomplete Spreading Occurs when an insufficient amount of powder is repeatedly fetched
from the powder dispenser (Fig. 1). Results in a lack of powder, the
severity of which is highest nearest the powder collector (Fig. 1).

Yellow

ing work relies on human-created detectors for specific anomalies,
e.g. line profiles [7] and segmentation [13], while the presented
methodology makes use of contemporary machine learning tech-
niques to construct the anomaly detectors. It is worth noting that
LPBF machine manufactures (including EOS GmbH [18]) are now
releasing process monitoring solutions that include analyses of the
powder bed. Unfortunately, many of the details about the method-
ologies used by these systems are currently unavailable.

To accomplish the goal of comprehensive powder bed mon-
itoring, this work presents an algorithm that implements
contemporary machine learning and computer vision techniques
to detect and classify the enumerated anomalies using only hard-
ware provided by the LPBF machine manufacturer. In the computer
vision community, machine learning has become immensely pop-
ular, though many of the methods are typically applied to entire
images [19]. This presents a challenge as each powder bed image
may  contain hundreds of uniquely-identifiable anomalies; to com-
pensate, this work modifies a standard approach (Section 3) to
allow for classification of multiple objects within a single image,
an approach also pursued by Winn et al. [20]. Even as stand-alone
software (e.g. not integrated with the LPBF machine control sys-
tem), this algorithm has proven valuable in analyzing build failures
and in analyzing final part quality.

2. Experimental procedure and methods

All of the work presented herein is performed on an EOS M290
LPBF machine (EOS GmbH, Germany). No modifications are made
to the EOS hardware, e.g. only the stock camera and lighting con-
figurations are used. Images of the build plate and powder bed are
taken through a viewport located (almost) directly above the build
chamber. Grayscale images with a resolution of 1280 pixels × 1024
pixels are automatically captured immediately after a new powder
layer is spread. All software was developed in the MATLAB R2015a
and R2016a programing environments.

2.1. Image pre-processing

The raw images (Fig. 1) captured by the EOS M290 present
several difficulties that prevent their direct usage in a machine
learning-based algorithm. Fortunately, the camera mounting and
lighting conditions remain consistent throughout a build as well as
between different builds, so many of the required image enhance-
ments can be greatly simplified.

Out of the necessity of avoiding the laser optic train, the camera
is mounted such that its axis is not parallel to the normal vector of
the build plate. This distortion is corrected using a fully-constrained

Fig. 1. Raw powder bed image collected by the EOS M290.

Homography matrix [21] which warps and scales the raw image
such that a square build plate in the image will appear square.
Because the camera positioning and orientation are fixed, manual
measurements of a powder-free build plate (within the camera’s
field of view) were taken and no fiducial (e.g. corner) detection was
implemented to inform the Homography matrix. The image is then
cropped to include only the region of the powder bed directly above
the build plate. The spatial resolution (not synonymous with resolv-
ing power [22]) of the camera setup is between 290 �m/pixel and
340 �m/pixel (the existence of a range of resolutions is the result
of the misalignment between the camera axis and the normal vec-
tor of the build plate). After the described warping and cropping,
each pixel represents a 290 �m × 290 �m field of view; note that
no anomalies with a dimension less than 2.9 mm are reported by
the algorithm (Section 3.3).

During printing, the powder bed is lit by a single bank of white
LEDs on the right side of the build chamber. This side lighting
increases (compared to top lighting) the contrast of any 3D features
(e.g. hills and valleys), but it also results in uneven lighting condi-
tions. The uneven lighting causes a haloing effect in the images that
is detrimental to the training process. To remedy this, an anomaly-
free powder bed image was used to generate a baseline intensity
mask. Stochastic noise present in the mask was  reduced using a
Gaussian filter. This mask is applied to each future powder bed
image to levelize the lighting across the powder bed.
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