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A B S T R A C T

Determining population trends is critical for conservation. For most bird species, trends are based on count data
gathered by institutions with formalized survey protocols. However, limited resources may prevent these types
of surveys, especially in developing countries. Ecotourism growth and subsequent increases in opportunistic data
from birdwatching can provide a source of population trend information if analyses control for inter-observer
variation. List length analysis (LLA) controls for such variation by using the number of species recorded as a
proxy for observer skill and effort. Here, we use LLA on opportunistic data gathered by eBird to estimate po-
pulation trends for 574 North American bird species (48% of species declining) and compare these estimates to
population trends based on 1) formal breeding bird surveys (54% of species declining) and 2) population esti-
mates from eBird data controlled using more rigorous correction (46% of species declining). Our analyses show
that eBird data produce population trends that differ on average by only 0.4%/year from formal surveys and do
not differ significantly from estimates using more control metrics. We find that estimates do not improve ap-
preciably beyond 10,000 checklists, suggesting this as the minimum threshold of opportunistic data required for
population trend estimation. Lastly, we show that characteristics affecting a species' ubiquity, such as geographic
and elevational range, can affect its population trend estimate. Our results suggest that opportunistic data can be
used to approximate species population trends, especially for widespread species. Because our protocol uses
information present in all checklists, it can be applied to a diversity of data sources including eBird, trip reports,
and bird atlases.

1. Introduction

Determining regional and large-scale population trends for species
is a critical component of conservation. Accurate population trends are
required to identify species of conservation concern and to evaluate the
effectiveness of conservation programs (Kleiman et al., 2000; Tear
et al., 1995). For most bird species, populations are monitored using
point count data (Howe et al., 1989; Robertson et al., 1995; Sauer et al.,
2017), which assumes that changes in how often a species is detected
are correlated with changes in that species overall abundance.

In North America, the United States Geological Survey (USGS) and
the Canadian Wildlife Service (CWS) oversee the annual North
American Breeding Bird Survey (BBS) to monitor the populations of
many bird species that are breeding residents (Sauer et al., 2017). The
BBS maintains thousands of transects where observers record all birds
detected visually or aurally at set locations. These counts generate re-
liable population trends for many bird species at the state and national
level (Downes et al., 2016). Monitoring programs such as this require
substantial resources and are absent from most developing countries

(Seak et al., 2012; Şekercioğlu, 2012a), even though the growing threat
of climate change has made such monitoring programs more important
than ever (Harris et al., 2011). This paucity of population monitoring is
especially true in the tropics, home to the majority of the world's bird
species, many of which are specialized, sedentary and threatened with
extinction (Şekercioğlu and Sodhi, 2007; Tobias et al., 2013). Only a
few tropical and/or developing countries have bird atlas data
(Robertson et al., 1995) while in most countries ornithological data
primarily come from birdwatching tours, individual birdwatchers, and
other forms of opportunistic data (Şekercioğlu, 2012a). The geo-
graphical and temporal coverage of these types of data are less sys-
tematic than those of the BBS and may result in less accurate population
estimates.

The increase in ecotourism and the development of large citizen
science programs have resulted in a rapidly growing body of data on
birds. Opportunistic data have been previously employed to effectively
answer questions about species occurrence at large geographic or
temporal scales (Devictor et al., 2010). In some studies, large volumes
of opportunistic data have yielded results similar to those of formal
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bird-count surveys when examining spatial or temporal patterns of bird
occurrence (Munson et al., 2010; Walker and Taylor, 2017). Others,
however, have cautioned against the use of opportunistic data, parti-
cularly when estimating population trends for common species (Kamp
et al., 2016).

eBird is a large citizen science database that contains a large and
growing volume of bird count data (hereafter “checklists” or “lists”)
(Sullivan et al., 2009). Data from eBird has been successfully used to
analyze diversity (Callaghan and Gawlik, 2015; La Sorte et al., 2014),
species distributions (Fink et al., 2010), and migration (Supp et al.,
2015), as well as monitor population trends (Clark, 2017; Walker and
Taylor, 2017). These data are submitted by participants with a wide
range of skill and experience, and thus some means of observer quality
control must be implemented in any analysis. All eBird checklists are
submitted with various metrics that can help control for variation
among observers. Each checklist has data on the number of observers,
the time spent observing, and the distance travelled. This information
plays an important role in standardizing observations across partici-
pants, but is not available in many data sources, such as birding tour
lists and bird atlas data.

List length analysis (LLA) uses only the number of species recorded
on a given list as a proxy for observer skill and effort (Szabo et al.,
2010). LLA operates under the assumption that as the number of species
recorded on a given checklist increases, the likelihood of that list re-
cording a specific species also increases. Previous analyses of eBird data
have confirmed that the number of species reported increases with both
time spent observing (effort) and long-term participation continuity
(skill) (Kelling et al., 2015). Studies of eBird data have also shown that
using the number of species recorded does help to control for inter-
observer variability when estimating occupancy (Johnston et al., 2017)
Because the number of species observed can be gathered from any
birdwatching checklist, the use of LLA would allow for data from a
greater number of sources to be used when estimating population
trends.

However, using LLA in place of eBird's more complete means of
quality control may produce unreliable trend estimates. Population
trend estimates can vary widely depending on the method of analysis
used (Thomas and Martin, 1996). It has also been suggested that LLA
may perform poorly in areas with low diversity (Isaac et al., 2014).
Therefore, we use two different methods to estimate bird population
trends from opportunistic data (eBird) and compare them with each
other and with estimates from more formal surveys (BBS). Our first
method of analysis, hereafter “additional parameters,” or “AP,” uses
multiple parameters of effort associated with each eBird checklists,
including distance travelled and time spent observing. Our second
method, hereafter “list-length-only,” or “LO” uses only LLA, testing its
ability to serve as a proxy for effort. LLA has previously been used as a
means of quality control with eBird data (Walker and Taylor, 2017),
though only in conjunction with other metrics. Here, we compare re-
sults generated from more complex models to those generated by
models that only use LLA as a means of quality control. If results from
each analytical method are similar, it may be feasible to use multiple
sources of opportunistic data (such as birding tour lists and bird atlas
information) for which more standard methods of quality control may
be unavailable.

In this paper, we compare avian population trend data gathered by
formal surveying (BBS) to those estimated using LLA and eBird data. We
estimate population trends from eBird using both AP and LO analytical
methods and compare these methods to one another. We also test the
ability of citizen science data to estimate overall population trajectories
(the proportion of species with increasing or decreasing trends) at a
broad regional scale. We then use these results to estimate the volume
of citizen science data required to accurately detect these large-scale
changes. Finally, we investigate avian ecological characteristics that
best predict the potential of a species' population to be reliably esti-
mated using this methodology.

2. Methods

2.1. Data selection and trend calculation

We analyzed population changes for 574 bird species that occur on
both the Breeding Bird Survey lists and eBird checklists. All analyses
were done using R (Version 3.1.1) (R Core Team, 2014).

2.1.1. BBS trends
We downloaded the complete BBS dataset and reduced it to records

from the contiguous 48 United States (Paradiek et al., 2017). We further
reduced the dataset to counts conducted from 1997 through 2016. The
BBS dataset contains records as far back as 1967, however before 1997
most years contain fewer than 100 records and no years prior to 1997
contain> 10,000. Starting in 1997 all years contain between 128,000
and 141,000 records. Species that were recorded to the sub-species
level by the BBS were lumped together. We then generated presence/
absence data for each species at each point count station. Analyses were
done using presence/absence data rather than abundance to make the
results comparable between the BBS and eBird because many eBird lists
do not report abundance. Previous studies have found strong linear
correlations between the proportion of BBS point count stations at
which a species occurred and the reported abundance (Walker and
Taylor, 2017). Species population trends were estimated by fitting their
presence/absence data to mixed logistic regression models, with year
treated as a fixed effect. To reduce error associated with geographic
variation, route ID nested within state was treated as a random effect.
To ensure that using presence/absence data in place of abundance data
did not seriously affect trend estimates, we re-calculated population
trends by using BBS abundance data and mixed Poisson regression. The
rest of the cofactors from the logistic regression were kept the same.
The Pearson correlation coefficient across all species was 0.74, sug-
gesting a high degree of correlation between presence/absence and
abundance-based modeling techniques.

2.1.2. eBird trends
We downloaded the complete eBird basic dataset and again reduced

it to checklists from the contiguous United States gathered between
1997 and 2016. Checklists were based on unique “sampling event
identifiers.” eBird users are required to specify if they are reporting all
birds detected or whether their list represents only a sample of the
present avifauna. We eliminated all checklists that users defined as
incomplete. We also eliminated any checklists with fewer than four
species, as these short lists often represent a targeted search for a spe-
cific species and have the potential to confound results (Szabo et al.,
2010). Duplicate lists were excluded by condensing lists on the basis of
“group identifier”. 11,681,254 eBird lists remained for analysis after
duplicate, incomplete, and short lists were removed. When estimating
population trends for each species, we only used checklists from eBird
locations, as defined by the “locality ID”, with at least one record for
that species. All checklists that met the criteria for analysis were as-
signed a 1 or 0 depending on whether they recorded the species of
interest. We generated two sets of population trends for each species by
fitting this presence/absence data from eBird checklists to either an AP
or LO multiple logistic model. Both models included “year”, “number of
species”, and “state” as fixed effects. Every species observed during one
observation period receives its own record in eBird's data, but all are
associated with the same “sampling event identifier”. Therefore we
determined number of species recorded as the number of times a unique
“sampling event identifier” appeared in the data. AP models also took
advantage of the metrics of quality control associated with all eBird
checklists by including “distance travelled”, and “time spent observing”
as fixed effects. We additionally ran the same models but only used the
most recent 5, 10, and 15 years of data from eBird (rather than the
20 years included in the original analysis) to identify the necessary
timespan of opportunistic data required to elucidate long-term trends.
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