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a b s t r a c t 

This paper proposes a novel echo state network (ESN) architecture in a deep learning framework for time 

series prediction. The architecture is a uniform and consistent system with functional parts of the pre- 

training input network that effectively captures information with different degrees of abstraction in the 

observed data, and the minimum complexity ESN that possesses the powerful nonlinear approximation 

capability and highly efficient training. To our best knowledge, this is the first systematic model attempt- 

ing to introduce the deep learning methodology to the ESN modeling, which provides a more robust 

alternative to the conventional shallow ESNs. Extensive experiments on various widely used benchmarks 

of different origins and features show that our model achieves a great enhancement in the prediction 

accuracy and short-term memory capacity, without significant tradeoff in the model’s computational ef- 

ficiency. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Recurrent neural network (RNN) offers an outstanding nonlin- 

ear approach for modeling dynamic systems, which is character- 

ized by the recurrent connections between neurons. The special 

architecture is capable of directly processing temporal dependen- 

cies related to systems. Generally, RNNs can approximate arbitrary 

nonlinear dynamical system with arbitrary precision [1] . However, 

the early RNN architectures suffer from their limited memory ca- 

pacity, due to the vanishing or exploding gradient problem [2] , es- 

pecially when the information involved in past inputs need to be 

recovered over a long time interval. In other words, the conven- 

tional RNNs poorly handle the long-term temporal dependencies. 

In contrast, the Long Short Term Memory (LSTM) architecture is 

capable of dealing with this problem by designing special mem- 

ory cells that is actually a gated access mechanism to the neurons 

states [3] . Unfortunately, as a typical gradient-based network, LSTM 

is still unable to get rid of the drawbacks [2,4] , such as slow con- 

vergence, excessive calculation and suboptimal solutions. These is- 

sues are mainly attributed to the unfolding and backpropagation 

through time procedure. 

∗ Corresponding author at: School of Information Engineering, North China Uni- 

versity of Science and Technology, Tangshan 063009, PR China. 

E-mail address: sunxiaochuan@njupt.edu.cn (X. Sun). 

An extremely efficient network structure of RNN, called echo 

state network (ESN), was designed independently by Jaeger 

[5,6] for solving all the aforementioned issues. ESN is viewed as 

a powerful tool to model temporal correlations between the input 

and output sequences, whose kernel part is a single reservoir con- 

sisting of a great many neurons that are randomly interconnected 

and/or self-connected. The reservoir itself remains unchanged, 

once it is selected. During the ESN training, only the output 

weights need be computed through offline linear regression or 

online methods, such as the recursive least square [5–7] , which 

considerably reduces computational complexity. Consequently, the 

ESN paradigm completely escapes these shortcomings of gradient- 

descent RNNs (e.g., LSTM) listed above. Until now, ESN has been 

successfully applied in various research areas, e.g., noise model- 

ing [6] , pattern recognition [8] , robot control [9] , reinforcement 

learning [10] and time series prediction [11–14] . 

As a result of these merits, ESN has captured widespread 

attentions of the computational intelligence community, and many 

ESN extensions have been explored. The existing ESN implementa- 

tions mostly concentrate on the design of the network topologies, 

the selection of the neuron types, and the proposal of training 

algorithm. For example, Rodan and Tino [11] proposed a minimum 

complexity network structure for ESN, and through an exhaus- 

tive experimental and theoretical analysis, demonstrated that a 

reservoir could be simplified as much as possible, but not com- 

promising the model’s performance. Moreover, the most simplified 

ESN possessed the memory capacity being arbitrarily close to the 
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proved optimal value. Qiao et al. [12] constructed a growing ESN 

with a multiple subreservoirs in an incremental way, leading to 

superior prediction performance and learning speed, and gave the 

proof of the convergence. Holzmann and Hauser [13] introduced 

general infinite impulse response filter neurons instead of original 

sigmoid ones as well as a delay&sum readout for ESNs, which 

significantly outperformed the standard ESN and other state-of- 

the-art models for nonlinear dynamical system modeling. Li et al. 

[14] proposed a robust ESN in a Bayesian framework that replaced 

the original linear regression with the Bayesian regression, so that 

the resulted model was capable of dealing with outliers in the 

training data set. Although these studies have given the remark- 

able advantages in the modeling performance, the extended ESN 

models are just shallow neural networks, characterized by a single 

nonlinear transformation of the input data into a feature space, fol- 

lowed by a linear mapping. A number of recent theoretical results 

have demonstrated that the shallow structures are insufficient 

at representing some functions [15–17] , since they do not fully 

consider the diversity of the space distributions of the features 

in observed data, which greatly affects nonlinear approximation 

capability. Conversely, deep networks typically exhibit more pow- 

erful representation capacity than shallow networks with the same 

number of parameters for certain types of problems [18,19] . Hence, 

we would like to refine ESNs for superior nonlinear approximation 

capability from a deep learning perspective. 

Generally, a deep architecture is built-in layers, each of which 

consists of feature detector units responsible for feature extrac- 

tion [20,21] . Lower layers extract simple features and inject into 

higher layers, which successively perceive more abstract features. 

Deep belief network (DBN) [22–24] is one of the most important 

multiple-layer deep network architectures as well as a powerful 

probabilistic generative model. It can be trained to extract a 

deep hierarchical representation of input data by maximizing the 

likelihood of training data. Compared with the traditional shallow 

models, such as support vector machine, DBN can express highly 

variant functions, discover the potential laws existing in multiple 

features, and have a better generalization capacity, since “func- 

tions that can be compactly represented by a depth k architecture 

might require an exponential number of computational elements to 

be represented by a depth k − 1 architecture” [15] . Especially, the 

DBN model, proposed by Hinton et al. [24] , is a most promising 

alternative for deep networks. Structurally, it is viewed as stacked 

restricted Boltzmann machines (RBMs), each of which contains a 

visible layer representing observed data and a hidden layer learn- 

ing to represent features that capture higher-order correlations in 

the data [25] . This promising architecture has been successfully 

applied to various domains, such as natural language under- 

standing [18] , hand-written character recognition [26] , acoustic 

modeling [27] , action recognition [28,29] , super-resolution image 

processing [30,31] , information retrieval [32] . Inspired by this, we 

investigate the possibility of introducing the DBN methodology to 

the ESN paradigm so that the resulting model is able to obtain 

more powerful nonlinear approximation capability. 

In this paper, we propose a recurrent neural system with min- 

imum complexity from a deep learning perspective. A unified and 

consistent architecture is built by integrating DBN and minimum 

complexity ESN, where a pre-training input network (PIN) is fully 

connected to the considered ESN structure. The special component 

is able to learn the multi-level features related to the modeled 

sequential data, providing a powerful support for the subsequent 

nonlinear approximation. Similar to DBN, PIN is also composed 

of stacked RBMs, whereas its learning in a greedy layer-wise 

mode based on contrastive divergence theory (CD) is completely 

irrelevant to the following ESN training. Extensive experiments 

demonstrate the superiority of the proposed model. In summary, 

the contributions of this paper include three aspects. 

(1) To the best of our knowledge, this is the first attempt to in- 

troduce the deep learning methodology to the ESN modeling. 

In theory, the powerful capability of PIN on feature extraction 

can make the minimum complexity ESN a promising method 

for time series prediction. 

(2) The short-term memory (STM) of our model is redefined as the 

ability of recovering the visible inputs from the whole network 

output, and the relationship between the STM capacity and the 

prediction performance is further given. 

(3) The efficacy of the proposed model is evaluated considering 

a number of well-known benchmark datasets for prediction. 

Compared to the state-of-the-art models, our model obtains 

better prediction accuracy, while the computational burden is 

not significantly increased. 

The remaining of the paper is organized as follows. 

Section 2 provides some basic background on RBM, and DBN. 

Section 3 elaborates the architecture and learning algorithm of 

the proposed model. Experiments and evaluation results on the 

benchmark datasets are given in Section 4 . We empirically analyze 

the STM capacity of our deep ESN model in Section 5 . We discuss 

our DSCR model in Section 6 . Finally, this paper is concluded in 

Section 7. 

2. Background 

In this section, we give a brief introduction to the concepts 

related to DBNs, but particularly focus on the theoretical back- 

ground of RBMs, which are the foundation of DBN understanding. 

2.1. Restricted Boltzmann machines 

A restricted Boltzmann machine [15,25,32] is a two-layer, undi- 

rected, bipartite graphical model composed by two parts, i.e., vis- 

ible layer and hidden layer, which is trained in an unsupervised 

mode. Similar to the classical Boltzmann machine, the visible layer 

and hidden layer are fully connected via symmetric undirected 

weights, but there is no any intra-layer connection within both vis- 

ible and hidden layer. The architecture of a typical RBM model is 

shown in Fig. 1 , where v denotes the visible layer, h denotes the 

hidden layer, and w ij denotes the connection weight between the 

visible unit i and hidden unit j . 

The surprising advantage of RBM is embodied in the idea of 

reconstruction oriented learning. Just the information in hidden 

units, learnt as features, can be used to reconstruct the input. Once 

the original input is recovered perfectly during reconstruction, it 

implies that the hidden units reserve input information as much 

as possible, and the updated weights and biases are capable of ef- 

fectively measuring the input data. 

2.2. Deep belief network 

In general, as a deep feedforward network, DBN is built by a 

set of stacked RBMs, and trained by a layer-by-layer learning al- 

gorithm in an unsupervised greedy fashion. Especially, the features 

obtained by a RBM are viewed as the input data for a next RBM. 

Thereby, RBMs in a DBN are trained one by one, proceeding from 

the lower-level RBM and progressively shifting up in the hierarchy. 

In this way, DBN can increasingly capture deep features of input 

data. A typical DBN architecture is shown in Fig. 2 , where it con- 

tains four layers: one visible input layer, three RBM hidden layers 

and one output layer, and the visible input layer is the input layer 

of the first RBM. 

Generally speaking, the DBN learning consists of pre-training 

and fine-tuning. During the pre-training, input data is loaded to 

the visible input layer, and then the first RBM maps it to own 
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