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a b s t r a c t 

The inversion of extremely high order matrices has been a challenging task because of 

the limited processing and memory capacity of conventional computers. In a scenario in 

which the data does not fit in memory, it is worth to consider exchanging less memory 

usage for more processing time in order to enable the computation of the inverse which 

otherwise would be prohibitive. We propose a new algorithm to compute the inverse of 

block partitioned matrices with a reduced memory footprint. The algorithm works recur- 

sively to invert one block of a k × k block matrix M , with k ≥ 2, based on the successive 

splitting of M . It computes one block of the inverse at a time, in order to limit mem- 

ory usage during the entire processing. Experimental results show that, despite increasing 

computational complexity, matrices that otherwise would exceed the memory-usage limit 

can be inverted using this technique. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Matrix inversion is a computation task necessary in many scientific applications, such as signal processing, complex 

network analysis, statistics [1] and some eigenvalue-related problems [2] , to name just a few. There are some commonly 

available matrix inversion algorithms for nonsingular matrices, like Gaussian elimination, Gauss–Jordan, LU Decomposition 

and Cholesky decomposition. The majority of these algorithms are computationally intensive in use of memory and proces- 

sor. For example, computing the inverse of a n × n matrix with the Gauss–Jordan method has computational complexity of 

O ( n 3 ) and memory storage complexity of O ( n 2 ). This can forbid the applicability of such methods for large-scale matrices, 

mainly, because data may simply not fit in memory. 

Working with big data is a situation becoming increasingly common in today’s world due to advances in sensor and 

communication technologies and to the evolution of digital data. This has become a challenging task because the handled 

data exceed conventional sizes and are often collected at speed greater than the processing and memory capacity of con- 

ventional computers can handle. In classification (or regression) problems [3] , for example, inverting matrices of extremely 

high order can lead to exceeding the computer memory capacity just to store its inverse. Many algorithms were developed 

with the objective to speed up the processing of large matrix computations. In the sequel, we list a few of those effort s 

regarding block and recursive algorithms. 
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The use of block partitioned matrices is commonly used to cut down processing time of matrix computations. Block 

matrices may occur naturally due to the ordering of the equations and the variables in a wide variety of scientific and 

engineering applications, such as in the incompressible Navier-Stokes equations [4] , mixed finite elements approximation of 

elliptic partial differential equations [5] , optimal control [6] , electrical networks [7] and the Strassen’s Algorithm [8] for fast 

matrix multiplication. Algorithms that manipulate matrices at the block level are often more efficient because they are more 

abundant in level-3 operations [9] , and thus, can be implemented recursively. 

There are many related papers on the inverse of block matrices. In [10] , the authors provide inverse formulae for 2 × 2 

block matrices applied in block triangular matrices and various structured matrices such as Hamiltonian, per-Hermitian and 

centro-Hermitian matrices. The inversion of block circulant matrices has been extensively investigated in [11] and [12] . Also, 

in [13] , the authors suggest the use block preconditioner for the block partitioned matrices. 

Likewise, recursive algorithms have been applied in [11,14] and [15] for the inversion of particular cases of matrices, 

such as circulant-structured matrices. In [14] a recursive method is proposed for the LU decomposition of a real symmetric 

circulant matrix. In [11] , a recursive algorithm is applied to calculate of the first block row of the inverse of a block cir- 

culant matrix with circulant blocks. And, finally, in [15] , the authors propose a recursive algorithm based on the inversion 

of k × k block matrices for cases of matrices with circulant blocks based on the previous diagonalization of each circulant 

block. 

In addition, in [16] , the authors propose an efficient method for the inversion of matrices with U -diagonalizable blocks 

(being U a fixed unitary matrix) by utilizing the U -diagonalization of each block and subsequently a similarity transformation 

procedure. This approach allows getting the inverse of matrices with U -diagonalizable blocks without having to assume the 

invertibility of the blocks involved in the procedure, provided certain conditions met. 

Despite these numerous effort s, the inversion of large dense matrices is still challenging for large datasets. In a sce- 

nario in which the data does not fit in the memory, exchanging less memory usage for more processing time could be an 

alternative to enable the computation of the inverse which otherwise would be prohibitive. 

In this paper, motivated by the preceding considerations, we introduce a recursive method for the inversion of a k × k 

block matrix M ∈ R 

m ×m with square blocks of order b . The basic idea of this algorithm, called Block Recursive Inversion 

(BRI), lies in the determination of one block of the inverse of the matrix at a time. The method is based on the successive 

splitting of the original matrix into 4 square matrices of an inferior order, called frames. For this, it is considered two stages, 

namely the forward recursive procedure and backward recursive procedure. The forward recursive procedure terminates 

after k − 2 steps when the resulting frames have 2 × 2 blocks. Thereafter, in the backward recursive procedure, for each 4 

frames generated, operations are carried out reducing them to a single block. Differently from those proposed in [11,14,15] , 

our recursive algorithm may be applied for inverting any M ∈ R 

m ×m , provided that M is nonsingular and that all submatrices 

that need to be inverted in the recurrent procedure are also nonsingular. 

The recursive algorithm proposed in [15] presents lower computational complexity than the BRI in inversion processes 

for the cases of matrices with circulant blocks. However, for the cases that the data do not fit in memory, using the BRI 

might be more adequate since it has lower memory storage complexity. 

Besides requiring a much smaller memory footprint to work, having an algorithm that computes only parts of the in- 

verse at a time may be useful for some applications. In [3] , for example, only the diagonal blocks of the kernel matrix 

of the Least Squares Support Vector Machine (LS-SVM) are used to compute the predicted labels in the cross-validation 

algorithm. Thus, it is not strictly necessary to compute and, in fact, store in memory the entire inverse of the kernel 

matrix. 

This paper is organized as follows. In Section 2 , we introduce some notations and summarize the main definitions about 

the inversion of 2 × 2 block matrices using Schur Complement. In Section 3 , we present the proposed recursive algorithm. 

In Section 4 , we demonstrate a representative example of the recursive inversion of 4 × 4 block matrices. So, we introduce 

details of the implementation in Section 5 . In Section 6 , we present the complexity analysis of the proposed algorithm, 

including an investigation of the cost of memory storage computational. In Section 7 , we describe the experiments as well 

as the results obtained. Finally, in Section 8 , we present the conclusions and future works this research. 

2. Preliminaries 

In this section, we begin with some basic notations which are frequently used in the sequel. 

Let M ∈ R 

m ×m be a nonsingular matrix composed of square blocks M αβ of the same order 

M = 

⎡ 

⎣ 

M 11 · · · M 1 k 

. . . 
. . . 

. . . 
M k 1 · · · M kk 

⎤ 

⎦ , (1) 

where M αβ designates the ( α, β) block. With this notation, block M αβ has dimension b × b , with b = 

m 

k 
, and M = (M αβ ) is 

a k × k block matrix. 
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