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h i g h l i g h t s

• Vertical average of 3D Rayleigh–Bénard results in 2D Navier–Stokes system.
• Body force for this system which depends on 3D velocity is estimated.
• Dissipation wave number is estimated in terms of Grashof numbers.
• One side of the dissipation law holds up to a shape factor of the force.
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a b s t r a c t

The vertically averaged velocity of the 3D Rayleigh–Bénard problem is analyzed and numerically
simulated. This vertically averaged velocity satisfies a 2D incompressible Navier–Stokes system with a
body force involving the 3D velocity. A time average of this force is estimated through time averages of the
3D velocity. Relations similar to those from 2D turbulence are then derived. Direct numerical simulation
of the 3D Rayleigh–Bé nard is carried out to test how prominent the features of 2D turbulence are for this
Navier–Stokes system.
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1. Introduction

There are fundamental differences between the statistical the-
ories of isotropic, homogeneous turbulence in three and two space
dimensions. The 1941Kolmogorov–Obukhov theory [1,2] in 3Dhas
in the inertial range a κ−5/3 energy spectrum and direct cascade of
energy toward smaller scales, while in the Batchelor–Kraichnan–
Leith theory [3–5] for 2D the spectrum in the inertial range is found
to scale as κ−3 (up to a log-correction)with thedirect cascade being
one of enstrophy. Moreover at large length scales in 2D there is
expected to be an inverse cascade of energy associated with again,
a κ−5/3 energy spectrum. The direct cascademeans that the energy
in 3D (resp., enstrophy in 2D) is, on average, transferred to smaller
scales at a rate which is comparable to the energy injection rate
ϵ (resp. enstrophy injection rate η) down to scales small enough
to be dissipated by viscous effects. Dimensional analysis associates
this dissipation length scalewith thewave numbers κϵ = (ϵ/ν3)1/4
in 3D and κη = (η/ν3)1/6 in 2D. These pictures of turbulence are
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generallymade under the assumption that energy is injected over a
finite range of wave numbers, say [κ, κ]. In that case, the condition
κ ≪ κσ = (η/ϵ)1/2 is sufficient for an enstrophy cascade in 2D [6],
and in fact necessary [7].

For turbulence modeled by the Navier–Stokes equations (NSE)
on a torus in Rd, the energy is injected through an external body
force f. If the force is constant in time, it is convenient to gauge
turbulent behavior by the dimensionless Grashof number, G =

∥f∥L2/(ν2κ
d
0 ), where ν is the kinematic viscosity and κ0 the smallest

wavenumber. The extent of the inertial range can be controlled
through upper and lower bounds on κϵ and κη in terms of G, which
can be specified by the body force. To meet the condition κ ≪ κσ
for an enstrophy cascade, however, requires knowledge of the so-
lution. It is not clear what type of finite mode force would produce
a solution meeting that condition: how its Fourier coefficients are
distributed, how they should depend on time. A common approach
in direct numerical simulations of turbulence is to take the force
to be stochastic in a finite number of arbitrarily chosen modes.
By considering instead a force which incorporates effects from
a 3D boundary layer, we expect to see turbulent behavior that
has a natural connection to a physical problem. This is the main
motivation for what follows.
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In this paperwe study the 2DNSEwhich results upon taking the
vertical average of the momentum equation in the 3D Rayleigh–
Bénard system. This 2D system has a time-dependent force f2
comprised of a Reynolds stress (difference between the nonlinear
term of the averages and the average of the nonlinear term) as
well as a boundary shear contribution (average of the vertical
diffusion). Since both of these forcing terms depend on the 3D
velocity of the Rayleigh–Bénard problem, they are time depen-
dent, and expected to involve all modes. We deal with the time
dependence of the force by considering twoGrashof-type numbers
G∗ = ∥⟨f2⟩∥L2/(νκ0)2 and G∗

= ⟨∥f2∥2
L2

⟩
1/2/(νκ0)2, where ⟨·⟩ is

an extended time average (see (3.14)). This approach differs from
another for 2D turbulencewith time dependent forcing in all scales
in [8] where bounds are found in terms of ess supt∥f (t)∥L2/(νκ0)2.

We derive in Section 2 the Reynolds stress and boundary shear
terms that force the vertically averaged momentum equation. The
resulting 2D Navier–Stokes as well as the 3D Rayleigh–Bénard
system are both expressed in functional form in Section 3 along
with essential preliminary material. We recover in Section 4 an
identity from [9] expressing the time average of enstrophy for the
3D velocity in terms of the Rayleigh and Nusselt numbers, Ra and
Nu. Then, for any solution to theRayleigh–Bénard systemsatisfying
amaximumprinciple for the temperature,wederive bounds on the
Reynolds numbers for the 3D and vertically averaged velocity. In
Section 5 we prove relations akin to some for 2D turbulence. This
starts with upper and lower bounds on κη in terms of G∗ and G∗

respectively. Since the body force is expected to contribute to the
enstrophy at all wave numbers, it can be interpreted as a source
external to any range. This is why we include it in a pseudo-flux
function of enstrophy (per unit mass), which is comparable to the
enstrophy dissipation rate over a predictable range of scales. One
side of the dissipation law is shown to hold up to a shape factor
of the force f2. In Section 6 we derive an upper bound on the time
average of ∥f2∥2

L2
.

Direct numerical simulations are presented in Section 7. There
we compute the solution to the 3D Rayleigh–Bénard problem
in order to calculate the vertically averaged velocity as well as
Reynolds stress and boundary shear forces. The energy spectra at
several Rayleigh numbers are compared. At Ra = 5 × 105 the
spectrum shows a κ−3 range, while at Ra = 1 × 106, 2.5 × 106,
the spectra display a κ−5/3. The bounding expressions for the
energy dissipation wave number are plotted from Ra = 5 × 104

to Ra = 2.5 × 106, and indicate that the lower bound may be
considerably sharper than the upper bound. The computations are
done using a pseudospectral code with 512 ×512 ×16 Fourier–
Chebyshev modes, before dealiasing. Due to the low resolution in
the vertical direction, the results of these simulations are to be
taken as suggestive.

2. Vertically averaged velocity

The Boussinesq approximation of convection between two
plates can be written as

ut − ν∆u + u · ∇u + ∇p = gαδθθe3, (2.1)
∇ · u = 0, (2.2)

θt + (u · ∇)θ − β∆θ = 0 (2.3)

in the region

Ω = {(x, y, z) : (x, y) ∈ (0, L)2, 0 < z < h} ,

with boundary conditions

u = 0 at z = 0 and z = h, (2.4)
p,u, θ periodic in horizontal directions x, y, (2.5)
θ (0) = 1, θ (h) = 0 . (2.6)

Here, δθ is the physical positive temperature difference be-
tween the bottom and top plates. We work with a modified pres-
sure p = p̃/ρ0 + gz, where p̃ is the physical pressure, ρ0 the
density and g the magnitude of a constant gravitational field. We
denote the heat conduction coefficient by β , the volume expansion
coefficient by α, and the standard unit vector in the z-direction by
e3. The components of the velocity in three dimensions are denoted
as u = (u, v, w).

We consider the vertical average of the horizontal components
of the 3D momentum equation

ut − ν∆u + (u · ∇)u + ∇p = F∂ (u) + FR(u) , (2.7)

inΩ = (0, L)2, where u = (u, v),

u = u(x, y) =
1
h

∫ h

0
u(x, y, z) dz , similarly for v, p

and the balancing force consists of a boundary shear

F∂ = νuzz =
ν

h

(
uz(x, y, h) − uz(x, y, 0)
vz(x, y, h) − vz(x, y, 0)

)
and Reynolds stress

FR =

(
FR
1

FR
2

)
=

(
u ux + v uy − uux + vuy + wuz

u vx + v vy − uvx + vvy + wvz

)
.

From the incompressibility of the 3D velocity and the boundary
conditionu = 0 at the top andbottom,wehave that the 2Dvelocity
u is divergence-free:

0 =
1
h

∫ h

0
ux + vy + wz dz = ux + vy +

1
h
[w(h) − w(0)]

= ux + vy .

Wenow rewrite the Reynolds stress in amore convenient form.
First, we integrate by parts, and use 3D incompressibility to obtain

wuz = −uwz = u(ux + vy). (2.8)

Then using (2.8) in the first component of the Reynolds stress, and
applying 2D incompressibility ux = −vy, we have

FR
1 = u ux + v uy − uux + vuy + wuz

= u ux + v uy − 2uux − vuy − uvy
= 2u ux + v uy + u vy − 2uux − vuy − uvy .

These six final terms can be regrouped through[
(u − u)2

]
x = 2(u − u)(ux − ux) = 2 (uux − u ux − u ux + u ux)

= 2uux − 2u ux

[(u − u)(v − v)]y = (uy − uy)(v − v) + (u − u)(vy − vy)
= vuy − v uy + uvy − u vy .

Reversing all the signs, we have

FR
1 = −

[
(u − u)2

]
x − [(u − u)(v − v)]y , (2.9)

with a symmetric derivation giving

FR
2 = −

[
(v − v)2

]
y − [(u − u)(v − v)]x . (2.10)

It follows from (2.9), (2.10) that FR has zero 2D spatial mean,
while F∂ might not. We decompose the averaged velocity as u2 =

u − u0, where

u0 =
1
L2

∫
Ω

u dx, x = (x, y)
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