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a b s t r a c t 

We consider the expected shortfall, a coherent risk measure that is gaining popularity outside mathe- 

matical finance and that is being applied to an increasing number of optimization problems due to its 

versatility and pleasant properties. A commonly used heuristic to optimize the expected shortfall con- 

sists in replacing the unknown distribution of the loss function with its empirical discrete counterpart 

constructed from observations. The boundary of the empirical shortfall tail is called the shortfall thresh- 

old, and, in this paper, we study the probability of incurring losses larger than the shortfall threshold. 

In a stationary set-up, we show that under mild conditions a striking universal result holds which says 

that the probability of losses exceeding the shortfall threshold is a random variable whose distribution 

is independent of the distribution of the loss function. This result complements previous findings on the 

expected shortfall and bears important practical consequences on the applications of this risk measure 

to stochastic optimization. The theory this result rests on is fully developed in this paper and its use is 

illustrated by examples. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In this paper, we consider the following sample-based opti- 

mization problem: 

x ∗N = arg min 

x ∈X 
{ average of the k largest values among 

L (x, δ1 ) , . . . , L (x, δN ) } , (1) 

where k is an integer in the range 1 ≤ k ≤ N , X is a convex sub- 

set of R 

d , L ( ·, δi ) are convex cost functions, each one depending on 

a value δi of a random variable δ, and where the random sam- 

ple (δ1 , . . . , δN ) is supposed to be independent and identically dis- 

tributed. In a real application, the variable δ describes uncertainty, 

and δi are observations of the variable δ that come from previ- 

ous experience. The quantity being minimized in (1) is the empir- 

ical estimate of a measure of risk, known in financial risk manage- 

ment as Conditional Value-at-Risk (CVaR) or Expected Shortfall (ES). 

To make the meaning of (1) concrete, we introduce at this early 

stage an example that will be resumed later with more explana- 

tion and numerical results. 
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Example 1.1 (Portfolio optimization) . Suppose that n a assets 

A 

[1] , . . . , A 

[ n a ] are available for trading. On period i , the asset A 

[ j ] 

may gain or lose value in the market, and the ratio δ[ j] 
i 

= (P 
[ j] 
i 

−
P 

[ j] 
i −1 

) /P 
[ j] 
i −1 

, where P 
[ j] 
i 

is the close price of asset A 

[ j ] on period 

i , is called the rate of return of asset A 

[ j ] on period i . To cope 

with uncertainty, investors diversify among assets; thus, if an in- 

vestor has 1$ to invest, s/he will invest fractions x [1] , . . . , x [ n a ] of 

her/his dollar on A 

[1] , . . . , A 

[ n a ] (we assume that x [ j ] ≥ 0 for all j , and ∑ n a 
j=1 

x [ j] = 1 ). The vector x := (x [1] , . . . , x [ n a ] ) is called a portfolio . 

Letting δi := (δ[1] 
i 

, . . . , δ[ n a ] 
i 

) be the vector of the rates of return, the 

scalar product δi · x = 

∑ n a 
j=1 

δ[ j] 
i 

x [ j] is the rate of return of the port- 

folio on period i . If δi ·x is positive, the investor’s capital increases 

on period i of δi ·x $ for each dollar invested. Hence, 

L i (x ) := −δi · x 

quantifies the portfolio loss on period i . 

Suppose now that the investor has observed a record of N 

vectors (δ1 , . . . , δN ) on various periods. Then s/he can choose a 

portfolio x ∗
N 

by minimizing cost (1) where X = { x ∈ R 

n a : x [ j] ≥
0 for all j , 

∑ n a 
j=1 

x [ j] = 1 } is the simplex in R 

n a . The interpretation 

is that the investor chooses the portfolio that incurs the lowest av- 

erage loss over the empirical shortfall cases. 

CVaR is a coherent risk measure in the sense of Artzner, Del- 

baen, Eber, and Heath (1999) , which has been introduced and pop- 
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ularized by Rockafellar and Uryasev (20 0 0) and Rockafellar and 

Uryasev (2002) in their papers. 1 ES (see e.g. Christoffersen, 2012 or 

Fabozzi, Kolm, Pachamanova, & Focardi, 2007 ) is defined similarly 

to CVaR, and the difference between CVaR and ES arises only 

when the distribution of L ( x , ·) has point masses (that is, there are 

single values that have non-zero probability to occur). Moreover, 

in finance, often such a difference is not even considered and a 

definition of ES completely equivalent to CVaR is used, see e.g. 

Acerbi and Tasche (2002) and McNeil, Frey, and Embrechts (2015 , 

Chapter 2). In this paper we deal with distributions without point 

masses, and use the definition of ES (or CVaR) that is given in for- 

mula (4) below. Terminology and technicalities aside, the concept 

of expected shortfall is gaining popularity in fields well outside 

the realm of financial analysis. For example, ES as a measure of 

risk has recently seen applications to breast cancer therapy ( Chan, 

Mahmoudzadeh, & Purdie, 2014 ), scheduling ( Quan, He, & He, 

2014; Sarin, Sherali, & Liao, 2014 ), and machine learning ( Takeda, 

2009; Takeda & Kanamori, 2009, 2014; Wang, Dang, & Wang, 

2015 ). 2 

As said before, Problem (1) is a heuristic towards the minimiza- 

tion of an ES risk measure and in this paper we provide rigorous 

results that certify the properties of this heuristic. More precisely, 

we introduce a notion of shortfall threshold L̄ N (see Eq. (6) ) which 

is interpreted as the empirical boundary of shortfall cases and con- 

sider the event where “a further function L ( ·, δ), with δ sampled 

from P independently of the already seen values (δ1 , . . . , δN ) , in- 

curs a cost L (x ∗N , δ) bigger than L̄ N ”. Such a probability is written 

as P 

{
δ : L (x ∗

N 
, δ) > L̄ N 

}
, and is a random variable because it de- 

pends on x ∗
N 

and L̄ N , which in turn depend on the random sample 

δ1 , . . . , δN . 

We show that a probabilistic certificate of the form 

P 

{
δ : L (x ∗N , δ) > L̄ N 

}
≤ ε with confidence 1 − β (2) 

can be attached to the solution of (1) . This result has a universal 

validity, that is, it holds true regardless of the distribution P by 

which the δi ’s are sampled. Hence, an experimenter unaware of 

P can still append to the solution of Problem (1) a probabilistic 

certificate in the form of (2) . This paper also shows the usefulness 

of this result by providing a set of corollaries that have a practical 

use, as well as application examples with real data. 

1.1. Structure of the paper 

Relevant definitions are given in Section 2 . In Section 3 the 

main result that the random variable P 

{
δ : L (x ∗

N 
, δ) > L̄ N 

}
has a 

universal distribution is stated and proven, followed by two corol- 

laries regarding the statistics and the long-run behavior of such 

random variable. Section 4 presents two applications exploring, re- 

spectively, the choice of k , and the long-run behavior of a sequence 

of optimization problems solved in a “sliding window” fashion. In 

Section 5 , the results from Sections 3 and 4 are applied to the op- 

timization of a portfolio that includes shares of 10 companies with 

high market capitalization traded on the New York Stock Exchange 

and the NASDAQ. The paper ends with some conclusions and ac- 

knowledgments. 

2. Formal definitions and problem position 

Let X ⊆ R 

d be a convex set, (�, F , P ) be a probability space, 

and L : X × � → R be a function such that 

1 A recent work of Mafusalov and Uryasev (2016) has generalized the concept 

of CVaR from that of a risk measure to that of a norm over a space of random 

variables. In fact the average of the k greatest values among | l 1 | , . . . , | l N | of a vector 

(l 1 , . . . , l N ) ∈ R N is a norm on R N ; for k = 1 it reduces to the Chebycheff norm ‖·‖ ∞ . 
2 The minimization problem with empirical distribution in Takeda and Kanamori 

(2014 , Section 3.2) is essentially Problem (1) . 

1. For any x ∈ X , L ( x , ·) is a random variable on (�, F , P ) ; 

2. For any δ ∈ �, L ( ·, δ) is a convex function on X . 

L is interpreted as a cost function whose value depends on 

an optimization variable x and a variable δ (uncertainty vari- 

able) that accounts for all other sources of variation of L be- 

sides x . If (δ1 , . . . , δN ) is a sample of independent realizations from 

(�, F , P ) , we shall often use the shorthand notation L i := L ( ·, δi ), 

and L i ( x ) := L ( x , δi ), i = 1 , . . . , N. 

For any x ∈ X , denote by L ( i ) ( x ), i = 1 , . . . , N, the values attained 

by L 1 (x ) , . . . , L N (x ) taken in descending order: 

L (1) (x ) ≥ L (2) (x ) ≥ · · · ≥ L (N) (x ) . 

In statistical terminology, David and Nagaraja (2003) , L (N−i +1) (x ) is 

called the i th order statistic of the random sample L 1 (x ) , . . . , L N (x ) . 

Problem (1) can now be restated as follows: 

min 

x ∈X 
1 

k 

k ∑ 

i =1 

L (i ) (x ) , (3) 

where 1 ≤ k ≤ N . 

We next introduce a definition of expected shortfall. If L is a 

random variable modeling a loss, α ∈ [0,1], and F L is the cumula- 

tive distribution function of L , the Value at Risk (VaR) and Expected 

Shortfall (ES) of L are given by: 

VaR α(L ) := min { l ∈ R : F L (l) ≥ α} , 
ES α(L ) := E [ L | L > VaR α(L ) ] . 

(4) 

VaR α( L ) is the threshold value at the boundary of the fraction α
of highest losses. VaR is currently the most widely adopted risk 

measure in banking and finance despite some of its shortcom- 

ings seem to suggest that it would be better replaced by other 

measures like ES (refer e.g. to Christoffersen (2012) and Fabozzi 

et al. (2007) for examples and practical uses, and to Rockafellar 

and Uryasev (2002) and Hong, Hu, and Liu (2014) for a compari- 

son of the properties of VaR and ES). ES α( L ) is instead the expected 

loss suffered when the threshold VaR α( L ) is exceeded. When the 

loss L depends on a choice x ∈ X , i.e., L = L (x ) , it makes sense to 

minimize the expected shortfall for a selected value of α: 

min 

x ∈X 
ES α(L (x )) . (5) 

Problem (3) is indeed an empirical version of Problem (5) for 

α = 1 − k 
N , based on the N observations δ1 , . . . , δN . Hence, we call 

Problem (3) the empirical expected shortfall problem. 

Let x ∗
N 

be the minimizer of (3) , assume that it exists and is 

unique and, assuming also that N ≥ k + d, define 

L̄ N := L (k + d) (x ∗N ) . (6) 

We call L̄ N the shortfall threshold . In typical cases the interpretation 

of L̄ N is that it separates shortfall empirical functions from func- 

tions attaining a lower value at the minimizer. This is easily under- 

stood by making reference to a simple case where d = 1 and k = 2 , 

as shown in Fig. 1 (a). The dashed function is 1 
2 (L (1) (x ) + L (2) (x )) . 

x ∗
N 

minimizes this dashed function, which happens at the intersec- 

tion of two functions L i . L̄ N = L (2) (x ∗
N 
) = L (3) (x ∗

N 
) is at the boundary 

of the values attained by the functions L i that are averaged to de- 

termine the solution. Notice, however, that there are cases where 

L̄ N takes a value lower than the boundary value. For example, in 

Fig. 1 (b) the solution is determined by two functions only, and 

L̄ N is obtained by “digging” at x ∗N until the third value L (3) (x ∗N ) is 

reached. This situation may occur when the cost functions are not 

linear, as in Fig. 1 (b), or even when they are linear and the so- 

lution x ∗
N 

is obtained at a boundary point of the optimization do- 

main X . The reason why L̄ N is defined to always be the (k + d) th 

largest cost is that the theoretical certificate introduced in this pa- 

per holds true rigorously for this choice only. 
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