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h i g h l i g h t s

• The basic local independence model (BLIM) is a probabilistic knowledge structure.
• The paper provides a theoretical treatment of the (local) identifiability of the BLIM.
• It derives conditions giving rise to global non-identifiability, some of them new.
• This provides a full account of the occurring parameter trade-offs.
• Conjectures on the identifiability of the BLIM are shown to be wrong, and are revised.

a r t i c l e i n f o

Article history:
Received 26 September 2012
Received in revised form
20 July 2016
Available online xxxx

Keywords:
Knowledge spaces
Learning spaces
Basic local independence model
Jacobian matrix
Local identifiability
Global identifiability

a b s t r a c t

The so-called basic local independence model (BLIM) constitutes the standard probabilistic model within
the theory of knowledge structures. The present paper characterizes local identifiability of the BLIM
through the rank of its Jacobian matrix. Within this framework, it reconsiders conditions known to give
rise to non-identifiability, and presents some new cases. Together they completely cover the instances
cropping up in the collection of BLIMs arising from all the possible knowledge structures on a three-item
domain. The derived theoretical results, providing a full account of the trade-offs between parameters
that occur in these situations, hold for arbitrary BLIMs, and are not limited to domains of particular
cardinality. Moreover, it is shown that previously formulated conjectures on the encountered types of
parameter trade-offs need not hold on thewhole parameter space, but in general may only be true almost
everywhere. If this indeed is the case, remains an open problem.

© 2016 Elsevier Inc. All rights reserved.

Knowledge structures provide a highly flexible set-theoretic
framework for representing the organization of knowledge el-
ements in a domain. Although they were first introduced by
Doignon and Falmagne (1985) within a purely deterministic
approach, this perspective was broadened later on by devel-
oping a probabilistic framework on top of them (Falmagne &
Doignon, 1988a,b). The so-called basic local independence model
(BLIM; Doignon & Falmagne, 1999) forms the standard probabilis-
tic model within the theory of knowledge structures. Applications
of the BLIM raise several questions. How to determine the under-
lying knowledge structure, and given that, what are the parameter
values of the probabilistic model? It is the second question that
the current paper addresses. The focus, however, is not on sug-
gesting a particular method for properly estimating the parame-
ters, but to tackle the more fundamental problem of determining
whether the estimates obtained with any suchmethod are unique.
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This property is known as the identifiability of a parametric model.
Any such model is considered identifiable when there are no two
different sets of parameter values that lead to the same model
prediction.

Bamber and van Santen (1985, 2000) formalize these consider-
ations and provide general results concerning the identifiability of
a parametric model, which they define as a triple ⟨Θ, f , Φ⟩. Here
the set Θ ⊆ Rn is considered to form the parameter space, the set
Φ ⊆ Rm is called the outcome space, and the prediction function
f : Θ → Φ is a mapping from the parameter space into the out-
come space. A model ⟨Θ, f , Φ⟩ then is said to be (globally) identi-
fiable if its prediction function f is one-to-one (i.e., injective). It is
locally identifiable at a point θ0 ∈ Θ if there is an open neighbor-
hood of θ0 so that f restricted to that neighborhood is one-to-one
(cf. Bamber & van Santen, 1985, 2000). There are results show-
ing that the BLIMs induced by knowledge structures of a partic-
ular type exhibit non-identifiability (Spoto, Stefanutti, & Vidotto,
2012, 2013). The following goes beyond these results by providing
a complete account of the parameter trade-offs that occur in these
as well as other cases, which have not been covered yet.
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1. Probabilistic knowledge structures

Doignon and Falmagne (1985) define a knowledge structure as
a pair ⟨Q , K⟩ in which Q is a nonempty set (assumed to be finite
throughout the paper), andK is a family of subsets ofQ , containing
at least Q and the empty set ∅. The set Q is called the domain
of the knowledge structure. Its elements are referred to as items
and the subsets in the family K are labeled (knowledge) states. A
knowledge state represents the subset of items in the considered
domain that an individual masters.

In practical applications, we may not assume that a person
solves a problem if and only if the person masters this problem
(i.e. it is an element of the person’s knowledge state). There are two
kinds of errors that can occur. In case of a careless error the person
actuallymasters an items, but does not solve it, whereas solving an
itemwithout actuallymastering it is called a lucky guess. Handling
these types of errors calls for a probabilistic framework. Within
such an approach we can also take into account that knowledge
states will not occur with equal probability.

The introduction of a probabilistic framework is based on
dissociating the knowledge state K of a person from the actual
given response pattern R. Let R = 2Q denote the set of all possible
response patterns on the domain Q . Given a knowledge structure
⟨Q , K⟩ we have to define an appropriate probability space on the
set of outcomes R × K that specifies the joint probability P(R, K)
of observing response pattern R ∈ R and knowledge state K ∈ K .
Falmagne and Doignon (1988a,b) uniquely determine these joint
probabilities by specifying a (marginal) distribution PK on the
states ofK , and the conditional probabilities P(R | K) for all R ∈ R
and K ∈ K . The marginal distribution PR on R then is given by

PR(R) =


K∈K

P(R | K) · PK(K). (1)

The probabilistic model that received most interest satisfies the
following additional conditions. First, it is assumed that, given the
knowledge state K ∈ K , the solution behavior is stochastically
independent over items (conditional stochastic independence).
This may be expressed by

P(R | K) =


q∈Q

pq,R,K , (2)

with real parameters 0 ≤ pq,R,K ≤ 1. Second, it is assumed that
the parameters pq,R,K actually do not depend upon the knowledge
state K , but only upon item-specific parameters βq and ηq, which
are interpreted as the probabilities of a careless error and a lucky
guess on item q ∈ Q , respectively. This means that in (2) we have

pq,R,K =


βq if q ∉ R, q ∈ K

1 − βq if q ∈ R, q ∈ K
ηq if q ∈ R, q ∉ K

1 − ηq if q ∉ R, q ∉ K

(3)

with 0 ≤ βq < 1 and 0 ≤ ηq < 1. In the sequel, consideration will
be confined to the class of models for which (1), (2) and (3) hold,
and which are called basic local independence models (BLIM).

It is obvious from the above definitions that a BLIM can be
considered a latent class model (Andersen, 1982; Dayton, 1998;
Goodman, 1978; Lazarsfeld & Henry, 1968; Vermunt & Magidson,
2004) with the knowledge states forming the latent classes. In fact,
with (2) and (3) holding, a restricted latent class model is obtained
(Schrepp, 2005; Ünlü, 2011). Notice that in contrast to general
latent class analysis, the knowledge states impose a structure on
the set of latent classes which puts constraints on the conditional
probabilities of the response patterns given the latent classes.
Within the limited scope of linearly ordered latent classes this
idea has been implemented in some particular models (Dayton

& Macready, 1976; Lazarsfeld & Henry, 1968; Proctor, 1970) that
were intended to provide probabilistic versions of Guttman scaling
(Guttman, 1950). For details see Ünlü (2011).

Various approaches to estimating the parameters of a BLIM
have been suggested (Heller & Wickelmaier, 2012; Schrepp, 1999;
Stefanutti & Robusto, 2009). All of these contributions do not
touch upon the problem of identifiability. There is, however, work
showing that there are non-identifiable BLIMs (Spoto et al., 2012,
2013), and software to check given BLIMs (of moderate size) for
non-identifiability (Stefanutti, Heller, Anselmi, & Robusto, 2012).
While this proves their existence, the following for the first time
provides a full theoretical account of the parameter trade-offs in
those kind of structures as well as others, which have not been
considered before. These cases cover all the instances cropping up
in the collection of BLIMs arising from all the possible knowledge
structures on a three-item domain. Finally, the paper elaborates on
results characterizing important classes of knowledge structures,
forwhich theBLIMbuilt upon them is not identifiable, andprovides
new results on the possible types of parameter trade-offs that can
occur.

2. Setting up the framework

Let Q be a domain and K a knowledge structure on Q .
Characterizing the BLIM induced by the knowledge structure K as
a parametric model amounts to specify its parameter and outcome
space as well as its prediction function (e.g., Bamber & van Santen,
1985).

2.1. Parameter space

Some of the constraints defining the admissible parameter
combinations introduced in this section are quite obvious, while
others are more or less tacit assumptions that have not been
explicitly addressed in large parts of the literature (but see Heller
& Repitsch, 2012).

Let β = (βq)q∈Q and η = (ηq)q∈Q denote the parameter vectors
of the item-specific careless error and guessing probabilities,
respectively. Concerning the state probabilities, in order to
assure independence, all but one of them are included into
the corresponding parameter vector π . The natural choice for
excluding a state from K is among those subsets of the domain
that are definitely in K , which are the naïve state ∅ and the state
of full mastery Q . The following mainly refers to K∗

= K \ {Q }

(but see Section 4.2). Thus, letπ = (πK )K∈K∗ denote the parameter
vector of independent state probabilities πK = PK(K), K ∈ K∗.

In general, the parameter vectors θ = (β, η, π) consist of
n = 2 · |Q | + |K| − 1 components, with n characterizing the
number of free parameters. Several constraints apply that restrict
the parameter space to a proper subset of the n-dimensional unit
hypercube. First, all parameters are conceived as elements of the
open real interval (0, 1). Second, for all K ∈ K∗ we have
L∈K∗

πL < 1. (C1)

Third, the theory of knowledge structures heavily relies on natural
assumptions on the parameters βq and ηq, q ∈ Q , that, however,
most of the time remain implicit. Consider the parameter restric-
tion captured by inequality

βq + ηq < 1 for all q ∈ Q , (C2)

which means nothing else but that a correct response is more
likely if the item is mastered than if it is not mastered. This con-
straint is at the very heart of the idea of a knowledge state, and
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