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Mixing laws and causality in high frequency induction log applications
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Abstract

High frequency electromagnetic technologies for subsurface formation evaluation provide high spatial resolution and new opportunities for
petrophysical interpretation of data. Dispersion of rock properties and up-scaling from pore to reservoir scale (homogenization) represent the
two most challenging problems. In electrodynamics of porous media, various mixing and dispersion laws are used to homogenize rock properties
and describe their frequency behavior. Mixing laws and dispersion have a close link to the fundamental physical principle of causality and
therefore cannot be introduced arbitrarily. For any mixing/dispersion law, we need to prove that causality holds. For testing causality, we use
Titchmarsh’s theorem and, particularly, one of its modifications—Kramers–Kronig relations. Causality is discussed for Debye, Cole–Cole,
Havriliak–Negami, and CRIM models. Dispersion is closely related to wave propagation. Evaluation of phase and group velocities shed new
light on the physics of phase and amplitude measurements in lossy media. We evaluated various definitions of both velocities and their
dependence on spatial spectra or, in other words, on the arrangement of transmitting and receiving elements. To illustrate theoretical findings,
we use dielectric logging as an exemplary technology. Usually, in modern dielectric tools, amplitude and phase data are acquired, for various
frequencies and sensor positions. The measured phase is discontinuous at high frequencies and requires detection of discontinuity as well as
unwrapping. Remarkably, one can determine formation attenuation and loss angle based on multifrequency/multisensor amplitude data and
transform them into dielectric permittivity, resistivity, and true continuous phase. Transformations of exemplary tool data used in this paper
are suitable for a conceptual study and are specific for a uniform formation. We intentionally do not address the accuracy of measurements
and propagation of errors in the inversion process, since they are tool- and processing-specific. Different tools require joint analysis of all
available data and special noise reduction techniques associated with the structure of the acquisition system.
© 2017, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

High frequency electromagnetic technologies for subsur-
face formation evaluation provide high spatial resolution and
new opportunities for petrophysical interpretation of data.
Dispersion of rock properties and up-scaling from pore to
reservoir scale (homogenization) represent the two most
challenging problems. 

In electrodynamics of porous media, various mixing and
dispersion laws are used to homogenize rock properties and
describe their frequency behavior. Mixing laws and dispersion
have a close link to the fundamental physical principle of
causality and therefore cannot be introduced arbitrarily. For
any mixing/dispersion law, we need to prove that causality
holds. (Alu et al., 2011) discuss an example of causality
violation in Maxwell–Garnett mixing law. For testing causal-

ity, we use Titchmarsh’s theorem (Nordebo, 2013; Titchmarsh,
1926; Toll, 1956) and, particularly, one of its modifications—
Kramers–Kronig relations. Causality is discussed for Debye,
Cole–Cole, Havriliak–Negami, and CRIM models.

 Dispersion is closely related to wave propagation. Evalu-
ation of phase and group velocities shed new light on the
physics of phase and amplitude measurements in lossy media.
We evaluated various definitions of both velocities and their
dependence on spatial spectra or, in other words, on the
arrangement of transmitting and receiving elements. 

To illustrate theoretical findings, we use dielectric logging
as an exemplary technology. Usually, in modern dielectric
tools, amplitude and phase data are acquired, for various
frequencies and sensor positions. The measured phase is
discontinuous at high frequencies and requires detection of
discontinuity as well as unwrapping (Abbas, 2005). Remark-
ably, one can determine formation attenuation and loss angle
based on multifrequency/multisensor amplitude data and trans-
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form them into dielectric permittivity, resistivity and true
continuous phase. 

Transformations of exemplary tool data used in this paper
are suitable for a conceptual study and are specific for a
uniform formation. We intentionally do not address accuracy
of measurements and propagation of errors in the inversion
process since they are tool and processing specific. Real tools
require joint analysis of all available data and special noise
reduction techniques associated with the structure of the
acquisition system.

We start the paper with description of generic dielectric
tool (Section 2) that is used in following discussion of phase
and group velocities, spectra, mixing laws, and causality
(Sections 3–5).

2. Generic tool

We consider a generic tool schematically shown in Fig. 1.
On the left, three transmitters (magnetic dipoles), T1, T2, and
T3, generate EM field measured by the sensor, R. A reciprocal
configuration is shown on the right. 

2.1. Measurements and useful field transformations

Let us consider a signal generated by a single transmitter
in a single receiver. The normalized magnetic field,

hz = Hz / (M / 2πL3, may be expressed in the following way
(Kaufman and Keller, 1989):

hz = e−kL (1 + kL) eiωt, (1)

k 2 = −iωμ (σ − iωε) = −ω 2με − iωμσ. (2)

Here, M, L—transmitter moment (A⋅m2) and spacing (m),
respectively; ω = 2πf, where f is frequency (Hz); t—time;

σ—formation conductivity (S/m); ε = ε∗ ⋅ ε0—formation di-

electric permittivity (F/m); μ = μ∗ ⋅ μ0—formation magnetic

permeability (H/m); ε0 = 10−9 / (36π) F/m—dielectric permit-

tivity of free space; μ0 = 4π × 10−7 H/m—magnetic permeabil-

ity of free space; ε∗, μ∗—permittivity and  permeability
relative to free space.

It follows from Eq. (2) that the complex number k2 may
belong only to the third quarter of a complex plane. Let us
consider the following representation of k:

k = |k| eiϕk = |k| ⎛
⎝
cos (ϕk) + i sin (ϕk)⎞

⎠
 , (3)

|k| = √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ωμ√⎯⎯⎯⎯⎯⎯⎯⎯(ωε)2 + σ 2 , (4)

ϕk = 
1
2

 atan 2 (−ωε, −σ), (5)

−π / 2 ≤ ϕk ≤ −π / 4. (6)

Here, atan2(x, y) means an argument of a complex number
with real and imaginary parts equal x and y, respectively.
Angle ϕk closely relates to the loss angle δ in formation:
tan δ = tan (2ϕk) = σ / ωε.

We will need the following representation of the function
(1 + kL) in Eq. (1):

(1 + kL) = (1 + |k|L ⋅ cos (ϕk)) + i (|k|L ⋅ sin (ϕk)) = |1 + kL| eiψ, (7)

|1 + kL| = A (L) = √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯(1 + |k|L ⋅ cos (ϕk))
2 + (|k|L ⋅ sin (ϕk))2

= √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯1 + 2|k|L ⋅ cos (ϕk) + (|k|L)2  , (8)

ψ = arctan 
⎛
⎜
⎝

|k|L ⋅ sin (ϕk)
1 + |k|L ⋅ cos (ϕk)

⎞
⎟
⎠
 , ϕk ≤ ψ ≤0, |k L| ∈ (0, ∞). (9)

Equations (1)–(9) result in the following expression for the
normalized magnetic field, hz:

hz = A (L) e−α–iΦ, α = |k|L cos (ϕk), 
Φ = |k|L sin (ϕk) − ψ + ωt. (10)

Assuming L3 – L2 = L2 – L1 we introduce the following
transformations of three magnetic fields produced by three
transmitters in the receiver R: 

D2 = 
|hz (L3)|
|hz (L2)| = 

A (L3)
A (L2) e−|k|(L3–L2)cos(ϕk), (11)

D3 = 
|hz (L3)|
|hz (L2)| 

|hz (L1)|
|hz (L2)| − 

L3 L1

(L2)2
 = 

A (L3) A (L1)

(A (L2))2
 − 

L3
 
L1

(L2)2
. (12)

Exemplary transformations (11) and (12) are useful for
determining formation parameters, σ and ε. Other transforma-
tions may be considered as well. Please notice that D3 → 0
when ω → ∞. It provides increased sensitivity to formation
parameters at high frequencies though requires improved
accuracy of measurements.

2.2. Exemplary model and inversion

Given field transformations, D2 and D3, at a certain
frequency, f, we can determine formation parameters, σ and
ε. To illustrate the method, we selected the following model:

σ = 1.08 S/m; ε∗ = 55.62; f = 293,311,000 Hz.

Fig. 1. Generic tool schematics. 
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