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This work develops the theory of the blow-up phenomena for one Sobolev problem 
that arises in the theory of propagation of nonlinear waves in semiconductors. This 
problem is considered as 1) the Cauchy problem, 2) the initial–boundary value 
problem on the half-line and 3) the initial–boundary value problem on a segment. 
It was shown that in the first two cases the problem does not have weak solution 
even locally in time, but in the third case the problem has the classical solution that 
exists at least locally in time. The upper estimate of solvability time for classical 
solution in the third case is obtained. This analytical a priori information was used 
in the numerical experiment, which is able to determine the process of the solution’s 
blow-up more accurately.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

For the first time the “complete blow-up” phenomena were shown for the equation

−Δu = |x|−2u2, u � 0, x ∈ Ω\{0} ⊂ R
N (1.1)

in the work of H. Brezis and X. Cabre [7]. Then, for linear parabolic equation with singular potential the 
“instantaneous blow-up” phenomenon was obtained in [8]. For the singular nonlinear parabolic equation

ut − Δu = |x|−2u2, u � 0, x ∈ Ω\{0} ⊂ R
N , t > 0 (1.2)

the question about instantaneous blow-up was considered for the first time by F.B. Weissler [24].
It should be noted that in these works the comparison method was used and the proof technique was 

sufficiently difficult. In the work of E. Mitidieri and S.I. Pokhozhaev (see [20] and its bibliography) the 
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results about complete and instantaneous blow-up for equations of higher order were obtained by simpler
and effective method of non-linear capacitance.

In the following, instantaneous blow-up in nonlinear parabolic and hyperbolic equations was considered 
by V.A. Galaktionov and J.L. Vazquez [12], J.A. Goldstein and I. Kombe [14], Y. Giga and N. Umeda [13], 
E.I. Galakhov [10,11]. Note, that in some works the method based on the comparison principle was used 
(for parabolic equations). But in the works of E.I. Galakhov the method of S.I. Pokhozhaev, based on 
the method of non-linear capacitance, was developed. This method allows to get results about sufficient 
conditions of unsolvability for both parabolic and hyperbolic equations, including equations of higher order 
(not Sobolev equations).

For the first time the question about instantaneous blow-up in nonclassical Sobolev equations was ob-
tained in [9]. In this work the following problem was considered:

∂

∂t
(uxx + u) = uxx, u(x, 0) = u0(x), u(0, t) = u(l, t), l > 0. (1.3)

As the corollary fact of Theorem 4.1 of the work [9], the result about nonexistence of a bounded solution of 
this problem was obtained for an indefinitely small time interval with condition that l ∈ (0, π]. This result 
is stipulated by the fact that under the time derivative the operator ∂2

x + I is situated. Further, such results 
were appearing in the study of linear equation of Sobolev type

∂

∂t
(Δu + λu) + Δu = 0 for λ > 0, x ∈ Ω ⊂ R

N ,

in the case when the number λ falls on the spectrum of operator Δ in a bounded region Ω (see survey [23]). 
Particularly, at this survey the method of singular semigroup for study of linear Sobolev equations with 
singular operator with higher derivative was recited. In the sequel, the phenomena of the instantaneous 
blow-up for linear and nonlinear equations of Sobolev type have not been considering. The reason was that 
researchers were interested in the question about sufficient conditions of existence of the solution. In the 
work [1] the study of global unsolvability of Sobolev equations with fraction order of time derivative was 
performed. The new result that was obtained in the work [18] is, for example, that in the equation

∂2

∂t2
Δu + Δu + |u|q = 0, u(x, 0) = u0(x), u′(x, 0) = u1(x),

there are no singular coefficients of the form |x|−α or t−β, the initial functions belong to the class C∞
0 (RN ), 

and there is no solution of the equation even locally in time under the condition

1 < q � qkr =
{
N/(N − 2), if N � 3,
+∞, if N = 1, 2.

(1.4)

In this paper we consider the Cauchy problem, the initial–boundary value problem on the half-line and 
the initial–boundary value problem on a segment for the equation

∂2u

∂t∂x
+ ∂

∂x

(
|u|p−2u

)
= |u|q,

which has certain physical meaning. We obtained the following results: the Cauchy problem and the problem 
on the half-line do not have weak solutions even locally in time, but the classical solution of this problem on 
the segment exists locally in time (also we obtained sufficient blow-up conditions of weak solution in finite 
time for the considered problem).
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