
J. Parallel Distrib. Comput. 115 (2018) 29–40

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Password-based protection of clustered segments in distributed
memory systems
Lanfranco Lopriore
Dipartimento di Ingegneria dell’Informazione, Università di Pisa, via G. Caruso 16, 56126 Pisa, Italy

h i g h l i g h t s

• We refer to a distributed system consisting of nodes connected by a local area network.
• We consider the distribution, verification, review and revocation of access permissions.
• A form of protected pointer, the handle, is used to reference clusters of memory segments allocated in the same node.
• A handle referencing a given cluster includes a password and a selector of the segments in that cluster.
• We take advantage of a parametric one-way function for password generation.

a r t i c l e i n f o

Article history:
Received 7 April 2016
Received in revised form 12 January 2018
Accepted 15 January 2018
Available online 2 February 2018

Keywords:
Access right
Distributed system
Parametric one-way function
Protection
Revocation
Segment

a b s t r a c t

With reference to a distributed system consisting of nodes connected by a local area network, we consider
the problems related to the distribution, verification, review and revocation of access permissions. We
propose the organization of a protection system that takes advantage of a form of protected pointer, the
handle, to reference clusters of segments allocated in the same node. A handle is expressed in terms of a
selector and a password. The selector specifies the segments, the password specifies an access right, read
or write. Two primary passwords are associated with each cluster, corresponding to an access permission
for all the segments in that cluster. A handle weakening algorithm takes advantage of a parametric one-
way function to generate secondary passwords corresponding to less segments. A small set of protection
primitives makes it possible to allocate and delete segments in active clusters, and to use handles to
access remote segments both to read and to write. The resulting protection environment is evaluated
from a number of viewpoints, which include handle forging, review and revocation, the memory costs
for handle storage, the execution times for handle validation and the network traffic generated by the
execution of the protection primitives. An indication of the flexibility of the handle concept is given by
applying handles to the solution of a variety of protection problems.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

We refer to a distributed architecture consisting of nodes con-
nected by a local area network. Thenetwork topology is inessential.
We hypothesize that, in each node, the primary memory is parti-
tioned into two regions, private and shared. The private memory
can only be accessed by software components being executed in
that node. The shared memory, which is reserved to interprocess
communication, can also be accessed by software components
running in the other nodes, albeit in a strictly controlled fashion.
We shall not consider the mechanisms for the control of private
memory accesses; instead,we shall concentrate on sharedmemory
protection, with special reference to the problems inherent in the

E-mail address: lanfranco.lopriore@unipi.it.

distribution, verification, review and revocation of access permis-
sions. These are major problems in the design of any protection
system.Our solution complieswith a segmented viewof the shared
memory.

A segment is a contiguous memory area completely defined by
a base and a length. The base is the address of the first storage
unit reserved for the segment, the length expresses the segment
size. Segments are the elementary unit of information transmission
and sharing between the nodes. Two operations are possible on a
segment, to read the segment contents and to replace these con-
tents. Protection applies to local segments allocated in the shared
memory of same node as the software component attempting
the access, as well as to remote segments allocated in the shared
memory of the other nodes.

In a classical protection paradigm, active entities, called sub-
jects, generate access attempts to protected, passive entities, called

https://doi.org/10.1016/j.jpdc.2018.01.003
0743-7315/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2018.01.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2018.01.003&domain=pdf
mailto:lanfranco.lopriore@unipi.it
https://doi.org/10.1016/j.jpdc.2018.01.003


30 L. Lopriore / J. Parallel Distrib. Comput. 115 (2018) 29–40

objects [18,24,35]. The system associates a set of access rights with
each object. A subject aimed at accessing a given object to execute
one of the operations defined for that objectmust possess an access
right permitting successful accomplishment of that operation; if
this is not the case, the access attempt generates a protection
violation, and fails. A protection domain is a set of access rights for
correlated objects. A subject being executed in a given protection
domain can access the objects, taking advantage of the access
rights included in that domain.

We shall hypothesize that a subject can be a scheduled compu-
tation (a process), or, in an event driven environment, a software
routine activated by a hardware interrupt [22]. Segments are the
objects on which protection is exercised. Two access rights are
defined for segments, read and write. A subject that holds access
right read for a given segment is allowed copy the segment con-
tents from the shared memory of the node where the segment is
allocated into the privatememory of the nodewhere that subject is
running. Similarly, a subject that holds access rightwrite for a given
segment can overwrite the segment contentswith quantities taken
from its own private memory.

We consider segments grouped in clusters. A cluster is a collec-
tion of correlated segments, all contained in the shared memory
of the same network node. A subject that holds access right read
for a given cluster can access the segments of that cluster to read
their contents; this is similar to access rightwrite for segmentwrite
accesses.

1.1. Capabilities

A major problem in the design of a protection system is how to
represent the access rights held by each subject. A classical solution
is based on the concept of a capability [15]. This is a pair (G, AR),
where G is an object identifier, and AR is a set of access rights. A
subject that holds capability (G, AR) can access object G to carry
out the actions permitted by the access rights in AR.

Several aspects of a practical implementation of the capabil-
ity concept deserve in-depth consideration for their impact on
performance and usability. These include capability segregation,
weakening, review and revocation, and the memory requirements
for capability storage.

1.1.1. Segregation
Subjects must be prevented from modifying capabilities, for

instance, to add access rights to an existing capability, or even to
change the object identifier to forge a capability for a different
object. Several solutions to this capability segregation problem
have been proposed [5,16,32]. In a segmented memory system,
special segments, which we shall call capability segments, can
be reserved for capability storage (in contrast, the data segments
contain ordinary information items) [6,12]. A capability list is a col-
lection of capabilities for correlated objects; a capability segment
contains a capability list. The instruction set of the processor will
be enlarged by the addition of special capability instructions for
capability processing. Capability segments can only be accessed by
using the capability instructions; if an ordinary data instruction is
used, an exception of violated protection is raised.

In an alternative approach, a 1-bit tag is associated with each
memory cell, which specifies whether this cell contains a capa-
bility or an ordinary information item [1,11,31]. A cell tagged to
contain a capability can only be accessed by using the capability
instructions. This approach requires memory banks specialized to
contain the cell tags, and is contrary to the requisite of hardware
standardization [20].

1.1.2. Weakening
A subject that holds a capability for a given object can transfer a

copy of that capability to another subject. In this way, the recipient

acquires the whole access privilege specified by that capability. In
fact, a capability copy is indistinguishable from the original, and
possession of the copy is equivalent to possession of the original.
On the other hand, it may well be the case that a subject wishes
to transfer only part of the access rights included in the original
capability. In a classical capability environment, this means that
the instruction set of the processor should include a capability
instruction to modify the access right field in a strictly controlled
fashion, excluding access right amplification. In a common ap-
proach, the access right field features one bit for each access right;
if asserted, the given bit denotes the presence of the corresponding
access right. The access right weakening instruction will permit to
clear (but not to set) these bits.

1.1.3. Review and revocation
A subject that receives an access privilege in the form of a

capability is in the position to transmit it further. It follows that
capabilities tend to disperse throughout the system, and it is hard
to keep track of all existing copies of the original capability. In a
distributed system, this problem is exacerbated by the possibility
that copies spread to different nodes. A relevant problem is access
right revocation: a subject that created a given object should be
in the position to withdraw the access privileges distributed for
this object [2,8,9]. An essential property is that the effects of a
revocation should propagate to all the subjects that hold the access
privilege being revoked (transitive revocation). In a distributed
system, this means that revocation should extend across node
boundaries. Other desirable properties are the abilities to limit
revocation to a specific subset of the access rights (partial revoca-
tion), to revoke different access privileges for the same memory
area independently of each other (independent revocation), and to
restore the original privileges through the same mechanism as for
revocation (temporal revocation).

Several solutions to the access right revocation problem have
been devised [18]. Examples are a propagation graph associated
with each capability, which keeps track of all successive transfer-
rals of this capability between subjects [8]; temporary capabilities
with short lifetimes, which must be renewed periodically to avoid
implicit revocation [14]; and a centralized reference monitor as-
sociated with each object, which keeps track of the subjects that
hold access permission for this object [28]. These solutions tend to
impair a basic advantage of capability protection, i.e. simplicity in
access right transmission between subjects.

1.1.4. Memory requirements
A subject that is granted access privileges for a number of dis-

tinct objects has to hold a capability for each of these objects. The
resultingmemory requirements tend to be high in percentage. This
is especially the case if the systemshould support a large number of
small-sized objects [7,33], if we are aimed at exercising protection
at a high level of granularity. Consider, for instance, a capability
list that grants access permissions to a group of segments. We
have to reserve a capability segment to contain the capability
list. This capability segment is a memory waste, and a significant
complication in access privilege management.

1.2. Password capabilities

Password capabilities are a remarkable improvement on the
capability concept [2,3,10,17]. A password capability is a pair
(G, P), where G is an object identifier, and P is a password. A set
of passwords is associated with each protected object, and each
password corresponds to an access privilege expressed in terms of
a set of access rights. If password P matches one of the passwords
associated with object G, the password capability grants the access
privilege corresponding to the matching password.



https://isiarticles.com/article/161538

