

Available online at www.sciencedirect.com

ScienceDirect

Journal of Differential Equations

J. Differential Equations 264 (2018) 5221–5262

www.elsevier.com/locate/jde

On hyperbolicity and Gevrey well-posedness. Part two: Scalar or degenerate transitions

Baptiste Morisse 1

School of Mathematics, Cardiff University, UK

Received 17 February 2017; revised 20 September 2017

Available online 5 January 2018

Abstract

For first-order quasi-linear systems of partial differential equations, we formulate an assumption of a transition from initial hyperbolicity to ellipticity. This assumption bears on the principal symbol of the first-order operator. Under such an assumption, we prove a strong Hadamard instability for the associated Cauchy problem, namely an instantaneous defect of Hölder continuity of the flow from G^{σ} to L^2 , with $0 < \sigma < \sigma_0$, the limiting Gevrey index σ_0 depending on the nature of the transition. We restrict here to scalar transitions, and non-scalar transitions in which the boundary of the hyperbolic zone satisfies a flatness condition. As in our previous work for initially elliptic Cauchy problems [B. Morisse, *On hyperbolicity and Gevrey well-posedness. Part one: the elliptic case*, arXiv:1611.07225], the instability follows from a long-time Cauchy–Kovalevskaya construction for highly oscillating solutions. This extends recent work of N. Lerner, T. Nguyen, and B. Texier [*The onset of instability in first-order systems*, to appear in J. Eur. Math. Soc.].

Crown Copyright © 2018 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents

1.	Introduction		
	1.1. Background	5223	

E-mail address: morisseb@cardiff.ac.uk.

¹ The author is supported by the EPSRC grant "Quantitative Estimates in Spectral Theory and Their Complexity" (EP/N020154/1). The author thanks his PhD advisor Benjamin Texier for all the remarks on this work, Jeffrey Rauch for interesting discussions and Jean-François Coulombel for his careful reading of a previous version.

	1.2.	Overview of the paper	
2.	Main	assumptions and results	
	2.1.	Branching eigenvalues and defect of hyperbolicity	
	2.2.	The case of a smooth transition	
	2.3.	The case of a stiff transition	
	2.4.	Statement of the results	
3.	Highl	y oscillating solutions and reduction to a fixed point equation	
	3.1.	Highly oscillating solutions	
	3.2.	Remainder terms	
	3.3.	Upper bounds for the propagators	
	3.4.	Free solutions	
	3.5.	Fixed point equation	
4.	Contr	raction estimates	
	4.1.	Functional spaces: definitions	
	4.2.	Functional spaces: properties	
	4.3.	Estimates of remainder terms	
	4.4.	Contraction estimates	
5.	Estim	ates from below and Hadamard instability	
	5.1.	Existence of solutions	
	5.2.	Bounds from below	
	5.3.	Conclusion: Hadamard instability in Gevrey spaces	
6.	Appendix: on the Airy equation		
	6.1.	Reduction to the scalar Airy equation and resolution	
	6.2.	Upper bounds for the propagator: proof of Lemma 3.4	
	6.3.	Growth of the free solution: proof of Lemma 3.6	
Refer	ences	5261	

1. Introduction

We consider the following Cauchy problem, for first-order quasi-linear systems of partial differential equations:

$$\partial_t u = \sum_{j=1}^d A_j(t, x, u) \partial_{x_j} u + f(t, x, u), \qquad u(0, x) = h(x).$$
 (1.1)

The system is of size N, that is u(t,x) and f(t,x,u) are in \mathbb{R}^N and the $A_j(t,x,u) \in \mathbb{R}^{N\times N}$. The time t is nonnegative, and x is in \mathbb{R}^d . We assume throughout the paper that the A_j and f are analytic in a neighborhood of some point $(0,x_0,u_0) \in \mathbb{R}_t \times \mathbb{R}_x^d \times \mathbb{R}_u^N$.

Under assumptions of weak defects of hyperbolicity for the first-order operator, we prove ill-posedness of (1.1) in Gevrey spaces. Weak defect of hyperbolicity is here understood as a transition from hyperbolicity of the principal symbol at initial time, to ellipticity of the principal symbol for later times. Our results extend Métivier's ill-posedness theorem in Sobolev spaces for initially elliptic operators [10], our own ill-posedness result in Gevrey spaces for initially elliptic operators [11], Lerner, Nguyen and Texier's theorem on systems transitioning from hyperbolicity to ellipticity [6], and echo Lu's construction of WKB profiles [8] which are destabilized by terms not present in the initial data.

دريافت فورى ب

ISIArticles مرجع مقالات تخصصی ایران

- ✔ امكان دانلود نسخه تمام متن مقالات انگليسي
 - ✓ امكان دانلود نسخه ترجمه شده مقالات
 - ✓ پذیرش سفارش ترجمه تخصصی
- ✓ امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
 - ✓ امكان دانلود رايگان ۲ صفحه اول هر مقاله
 - ✔ امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
 - ✓ دانلود فوری مقاله پس از پرداخت آنلاین
- ✓ پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات