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Abstract

For first-order quasi-linear systems of partial differential equations, we formulate an assumption of a
transition from initial hyperbolicity to ellipticity. This assumption bears on the principal symbol of the
first-order operator. Under such an assumption, we prove a strong Hadamard instability for the associated
Cauchy problem, namely an instantaneous defect of Holder continuity of the flow from G° to L%, with
0 < o < 0y, the limiting Gevrey index o depending on the nature of the transition. We restrict here to
scalar transitions, and non-scalar transitions in which the boundary of the hyperbolic zone satisfies a flatness
condition. As in our previous work for initially elliptic Cauchy problems [B. Morisse, On hyperbolicity
and Gevrey well-posedness. Part one: the elliptic case, arXiv:1611.07225], the instability follows from a
long-time Cauchy—Kovalevskaya construction for highly oscillating solutions. This extends recent work of
N. Lerner, T. Nguyen, and B. Texier [The onset of instability in first-order systems, to appear in J. Eur. Math.
Soc.].
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1. Introduction

We consider the following Cauchy problem, for first-order quasi-linear systems of partial
differential equations:

d
du=Y Aj(t.x.wdgu+ ft.x.u),  u(0.x)=hx). (1.1)
j=1

The system is of size N, that is u(¢,x) and f (¢, x,u) are in RV and the Aj(t,x,u) € RNXN
The time 7 is nonnegative, and x is in R?. We assume throughout the paper that the A jand f are
analytic in a neighborhood of some point (0, xq, ug) € R; X Rf X Rl’:’ .

Under assumptions of weak defects of hyperbolicity for the first-order operator, we prove
ill-posedness of (1.1) in Gevrey spaces. Weak defect of hyperbolicity is here understood as a
transition from hyperbolicity of the principal symbol at initial time, to ellipticity of the principal
symbol for later times. Our results extend Métivier’s ill-posedness theorem in Sobolev spaces for
initially elliptic operators [10], our own ill-posedness result in Gevrey spaces for initially elliptic
operators [11], Lerner, Nguyen and Texier’s theorem on systems transitioning from hyperbolicity
to ellipticity [6], and echo Lu’s construction of WKB profiles [8] which are destabilized by terms
not present in the initial data.
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