On hyperbolicity and Gevrey well-posedness.
Part two: Scalar or degenerate transitions

Baptiste Morisse 1

School of Mathematics, Cardiff University, UK

Received 17 February 2017; revised 20 September 2017
Available online 5 January 2018

Abstract

For first-order quasi-linear systems of partial differential equations, we formulate an assumption of a transition from initial hyperbolicity to ellipticity. This assumption bears on the principal symbol of the first-order operator. Under such an assumption, we prove a strong Hadamard instability for the associated Cauchy problem, namely an instantaneous defect of Hölder continuity of the flow from G^σ to L^2, with $0 < \sigma < \sigma_0$, the limiting Gevrey index σ_0 depending on the nature of the transition. We restrict here to scalar transitions, and non-scalar transitions in which the boundary of the hyperbolic zone satisfies a flatness condition. As in our previous work for initially elliptic Cauchy problems [B. Morisse, On hyperbolicity and Gevrey well-posedness. Part one: the elliptic case, arXiv:1611.07225], the instability follows from a long-time Cauchy–Kovalevskaya construction for highly oscillating solutions. This extends recent work of N. Lerner, T. Nguyen, and B. Texier [The onset of instability in first-order systems, to appear in J. Eur. Math. Soc.].

Crown Copyright © 2018 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents

1. Introduction ... 5222
 1.1. Background .. 5223

1 The author is supported by the EPSRC grant “Quantitative Estimates in Spectral Theory and Their Complexity” (EP/N020154/1). The author thanks his PhD advisor Benjamin Texier for all the remarks on this work, Jeffrey Rauch for interesting discussions and Jean-François Coulombel for his careful reading of a previous version.

https://doi.org/10.1016/j.jde.2018.01.011
0022-0396/Crown Copyright © 2018 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

We consider the following Cauchy problem, for first-order quasi-linear systems of partial differential equations:

$$\partial_t u = \sum_{j=1}^{d} A_j(t, x, u) \partial_{x_j} u + f(t, x, u), \quad u(0, x) = h(x). \quad (1.1)$$

The system is of size N, that is $u(t, x)$ and $f(t, x, u)$ are in \mathbb{R}^N and the $A_j(t, x, u) \in \mathbb{R}^{N \times N}$. The time t is nonnegative, and x is in \mathbb{R}^d. We assume throughout the paper that the A_j and f are analytic in a neighborhood of some point $(0, x_0, u_0) \in \mathbb{R}_t \times \mathbb{R}_x^d \times \mathbb{R}_u^N$.

Under assumptions of weak defects of hyperbolicity for the first-order operator, we prove ill-posedness of (1.1) in Gevrey spaces. Weak defect of hyperbolicity is here understood as a transition from hyperbolicity of the principal symbol at initial time, to ellipticity of the principal symbol for later times. Our results extend Métivier’s ill-posedness theorem in Sobolev spaces for initially elliptic operators [10], our own ill-posedness result in Gevrey spaces for initially elliptic operators [11], Lerner, Nguyen and Texier’s theorem on systems transitioning from hyperbolicity to ellipticity [6], and echo Lu’s construction of WKB profiles [8] which are destabilized by terms not present in the initial data.
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات